Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks

Descripción del Articulo

Road damage, such as potholes and cracks, represent a constant nuisance to drivers as they could potentially cause accidents and damages. Current pothole detection in Peru, is mostly manually operated and hardly ever use image processing technology. To combat this we propose a mobile application cap...

Descripción completa

Detalles Bibliográficos
Autores: Peralta-Ireijo, Sebastian, Chavez-Arias, Bill, Ugarte, Willy
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676063
Enlace del recurso:http://hdl.handle.net/10757/676063
Nivel de acceso:acceso abierto
Materia:Computer Vision
Convolutional Neural Network
MobileNet
Pothole Detection
YOLO
Descripción
Sumario:Road damage, such as potholes and cracks, represent a constant nuisance to drivers as they could potentially cause accidents and damages. Current pothole detection in Peru, is mostly manually operated and hardly ever use image processing technology. To combat this we propose a mobile application capable of real-time road damage detection and spatial mapping across a city. Three models are going to be trained and evaluated (Yolov5, Yolov8 and MobileNet v2) on a novel dataset which contains images from Lima, Peru. Meanwhile, the viability of crack detection through bounding box method will be put to the test, each model will be trained once with cracks annotations and without. The YOLOv5 model was the one with the best results, as it showed the best mAP50 across all of out experiments. It got 99.0% and 98.3% mAP50 with the dataset without crack and with crack annotations, correspondingly..
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).