Medidas de diagnóstico para identificar observaciones influyentes en análisis de componentes principales comunes
Descripción del Articulo
Se presentan medidas para detectar e identificar observaciones influyentes, que han sido ampliamente desarrollados en el área de robustez y principalmente en el contexto de los modelos de regresión lineal, en cuya línea argumental, cabe citar los trabajos de Belsley (1982), Cook (1986), Atkinson (19...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2010 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | UNMSM-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/2101 |
Enlace del recurso: | https://hdl.handle.net/20.500.12672/2101 |
Nivel de acceso: | acceso abierto |
Materia: | Análisis de regresión Agricultura - Métodos estadísticos Botánica - Métodos estadísticos https://purl.org/pe-repo/ocde/ford#1.01.03 |
Sumario: | Se presentan medidas para detectar e identificar observaciones influyentes, que han sido ampliamente desarrollados en el área de robustez y principalmente en el contexto de los modelos de regresión lineal, en cuya línea argumental, cabe citar los trabajos de Belsley (1982), Cook (1986), Atkinson (1986) entre otros. El modelo de Componentes Principales Comunes según Flury (1984) para varios grupos de observaciones multivariantes asume que las variables transformadas según este modelo, tienen ejes principales iguales en todos los grupos pero diferentes matrices de covarianzas a lo largo de los ejes comunes entre los grupos. En el presente trabajo, se presentan medidas para identificar observaciones influyentes cuando los datos siguen el modelo de. También se ve la aproximación entre los elementos de la diagonal de la matriz de influencia local con los elementos de la diagonal de la matriz leverage, por lo que nos permiten detectar conjuntos de observaciones cuyos efectos simultáneos coinciden en la identificación de dichas observaciones influyentes y se ilustra con algunas aplicaciones en la botánica y agricultura. El método, se basa en la búsqueda de una estructura común, una rotación (común), que diagonalice las matrices de covarianza de los datos originales simultáneamente en todas las poblaciones, a partir de la comparación de las matrices de covarianzas. La hipótesis para la estructura básica común de las matrices de covarianza (definidas positivas) para poblaciones es: donde: es la matriz ortogonal de autovectores, son las matrices diagonales de autovalores y es la matriz de covarianza de la población -ésima. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).