Exportación Completada — 

EL CAMPO R DE NÚMEROS REALES Extensión de Q. Existencia de números no racionales para formar el conjunto R. La axiomática del sistema de números reales como campo ordenado, arquimediano y completo. Intervalos. Valor absoluto. Ecuaciones e inecuaciones en R. Aplicaciones. Sucesiones en Q. Didáctica del campo de números reales. Resuelve problemas de cantidad.

Descripción del Articulo

En el trabajo de investigación indicamos que mediante el siguiente trabajo monográfico se intenta recopilar información sobre el campo de los números reales, con la presentación de las sucesiones en los números racionales y la extensión de estos con la existencia de los números no racionales. Asimis...

Descripción completa

Detalles Bibliográficos
Autor: Pachas Mendiguete, Jhonatan Raul
Fecha de Publicación:2019
Institución:Universidad Nacional de Educación Enrique Guzmán y Valle
Repositorio:UNE-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.une.edu.pe:20.500.14039/6297
Enlace del recurso:https://repositorio.une.edu.pe/handle/20.500.14039/6297
Nivel de acceso:acceso abierto
Materia:Rendimiento Académico
http://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:En el trabajo de investigación indicamos que mediante el siguiente trabajo monográfico se intenta recopilar información sobre el campo de los números reales, con la presentación de las sucesiones en los números racionales y la extensión de estos con la existencia de los números no racionales. Asimismo, se menciona ejemplos y demostraciones mediante los teoremas, axiomas y propiedades de los números racionales. Cuando se deduce que la recta real no está completa o simplemente al notar huecos se da la necesidad de demostrar la existencia del conjunto de los números irracionales. Partiendo de magnitudes conmensurables e inconmensurables se establece también la necesidad de completar la recta real con el conjunto ya mencionado ℚ. En conclusión, representamos un nuevo sistema que tiene a los números racionales como subconjunto, que conserva sus propiedades y axiomas correspondientes. En otras palabras, este nuevo conjunto es una ampliación de los números racionales: Se observó el camino correcto que históricamente fue asombroso y retador para los pitagóricos, que en ese entonces trabajaban solo con los números racionales, y que se dieron cuenta de que no podían medir segmentos exactamente. Luego se enfatiza el campo de los números reales con el uso de sus propiedades y axiomas y principios en distintos ejemplos, al igual que operaciones como los intervalos, el valor absoluto, ecuaciones e inecuaciones en ℝ. Para finalizar este trabajo se presentó distintos ejemplos con las operaciones básicas y que se imparten como las aplicaciones en los números reales que se dan hoy en día para los estudiantes de secundaria.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).