PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020)
Descripción del Articulo
Quantification of the surface water offer is crucial for its management. In Peru, the low spatial density of hydrometric stations makes this task challenging. This work aims to evaluate the hydrological performance of a monthly water balance model in Peru using precipitation and evapotranspiration d...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Servicio Nacional de Meteorología e Hidrología del Perú |
Repositorio: | SENAMHI-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.senamhi.gob.pe:20.500.12542/927 |
Enlace del recurso: | https://hdl.handle.net/20.500.12542/927 https://doi.org/10.3390/w13081048 |
Nivel de acceso: | acceso abierto |
Materia: | GR2M Precipitation Hidrología Hidrogeología Modelos y Simulación https://purl.org/pe-repo/ocde/ford#1.05.11 precipitacion - Clima y Eventos Naturales |
id |
SEAM_311b49b145800a041d11436136e70026 |
---|---|
oai_identifier_str |
oai:repositorio.senamhi.gob.pe:20.500.12542/927 |
network_acronym_str |
SEAM |
network_name_str |
SENAMHI-Institucional |
repository_id_str |
4818 |
dc.title.es_PE.fl_str_mv |
PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020) |
title |
PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020) |
spellingShingle |
PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020) Llauca, Harold GR2M Precipitation Hidrología Hidrogeología Modelos y Simulación https://purl.org/pe-repo/ocde/ford#1.05.11 precipitacion - Clima y Eventos Naturales |
title_short |
PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020) |
title_full |
PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020) |
title_fullStr |
PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020) |
title_full_unstemmed |
PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020) |
title_sort |
PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020) |
author |
Llauca, Harold |
author_facet |
Llauca, Harold Lavado-Casimiro, W. Montesinos Cáceres, Cristian Albert Santini, W. Rau, Pedro |
author_role |
author |
author2 |
Lavado-Casimiro, W. Montesinos Cáceres, Cristian Albert Santini, W. Rau, Pedro |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Llauca, Harold Lavado-Casimiro, W. Montesinos Cáceres, Cristian Albert Santini, W. Rau, Pedro |
dc.subject.es_PE.fl_str_mv |
GR2M Precipitation Hidrología Hidrogeología Modelos y Simulación |
topic |
GR2M Precipitation Hidrología Hidrogeología Modelos y Simulación https://purl.org/pe-repo/ocde/ford#1.05.11 precipitacion - Clima y Eventos Naturales |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.11 |
dc.subject.sinia.none.fl_str_mv |
precipitacion - Clima y Eventos Naturales |
description |
Quantification of the surface water offer is crucial for its management. In Peru, the low spatial density of hydrometric stations makes this task challenging. This work aims to evaluate the hydrological performance of a monthly water balance model in Peru using precipitation and evapotranspiration data from the high-resolution meteorological PISCO dataset, which has been developed by the National Service of Meteorology and Hydrology of Peru (SENAMHI). A regionalization approach based on Fourier Amplitude Sensitivity Testing (FAST) of the rainfall-runoff (RR) and runoff variability (RV) indices defined 14 calibration regions nationwide. Next, the GR2M model was used at a semi-distributed scale in 3594 sub-basins and river streams to simulate monthly discharges from January 1981 to March 2020. Model performance was evaluated using the Kling–Gupta efficiency (KGE), square root transferred Nash–Sutcliffe efficiency (NSEsqrt), and water balance error (WBE) metrics. The results show a very well representation of monthly discharges for a large portion of Peruvian sub-basins (KGE ≥ 0.75, NSEsqrt ≥ 0.65, and −0.29 < WBE < 0.23). Finally, this study introduces a product of continuous monthly discharge rates in Peru, named PISCO_HyM_GR2M, to understand surface water balance in data-scarce sub-basins. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-05-06T14:50:26Z |
dc.date.available.none.fl_str_mv |
2021-05-06T14:50:26Z |
dc.date.issued.fl_str_mv |
2021-04-10 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.sinia.none.fl_str_mv |
text/publicacion cientifica |
format |
article |
dc.identifier.issn.none.fl_str_mv |
20734441 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/927 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/w13081048 |
dc.identifier.journal.none.fl_str_mv |
Water |
dc.identifier.url.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/927 |
identifier_str_mv |
20734441 Water |
url |
https://hdl.handle.net/20.500.12542/927 https://doi.org/10.3390/w13081048 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.uri.es_PE.fl_str_mv |
https://www.mdpi.com/2073-4441/13/8/1048/htm |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
MDPI AG |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - SENAMHI Servicio Nacional de Meteorología e Hidrología del Perú |
dc.source.none.fl_str_mv |
reponame:SENAMHI-Institucional instname:Servicio Nacional de Meteorología e Hidrología del Perú instacron:SENAMHI |
instname_str |
Servicio Nacional de Meteorología e Hidrología del Perú |
instacron_str |
SENAMHI |
institution |
SENAMHI |
reponame_str |
SENAMHI-Institucional |
collection |
SENAMHI-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/927/1/PISCO_HyM_GR2M-A-Model-of-Monthly-Water-Balance-in-Peru-1981-2020.pdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/927/2/license_rdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/927/3/license.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/927/4/PISCO_HyM_GR2M-A-Model-of-Monthly-Water-Balance-in-Peru-1981-2020.pdf.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/927/5/PISCO_HyM_GR2M-A-Model-of-Monthly-Water-Balance-in-Peru-1981-2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
e27301528b155a3cc85e047713d42d8e 9868ccc48a14c8d591352b6eaf7f6239 8a4605be74aa9ea9d79846c1fba20a33 51a97fbb324f3c7a21de166efe0b9a15 aa57402a85a987698fd57fabf53590bf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional SENAMHI |
repository.mail.fl_str_mv |
repositorio@senamhi.gob.pe |
_version_ |
1808282781398073344 |
spelling |
Llauca, HaroldLavado-Casimiro, W.Montesinos Cáceres, Cristian AlbertSantini, W.Rau, Pedro2021-05-06T14:50:26Z2021-05-06T14:50:26Z2021-04-1020734441https://hdl.handle.net/20.500.12542/927https://doi.org/10.3390/w13081048Waterhttps://hdl.handle.net/20.500.12542/927Quantification of the surface water offer is crucial for its management. In Peru, the low spatial density of hydrometric stations makes this task challenging. This work aims to evaluate the hydrological performance of a monthly water balance model in Peru using precipitation and evapotranspiration data from the high-resolution meteorological PISCO dataset, which has been developed by the National Service of Meteorology and Hydrology of Peru (SENAMHI). A regionalization approach based on Fourier Amplitude Sensitivity Testing (FAST) of the rainfall-runoff (RR) and runoff variability (RV) indices defined 14 calibration regions nationwide. Next, the GR2M model was used at a semi-distributed scale in 3594 sub-basins and river streams to simulate monthly discharges from January 1981 to March 2020. Model performance was evaluated using the Kling–Gupta efficiency (KGE), square root transferred Nash–Sutcliffe efficiency (NSEsqrt), and water balance error (WBE) metrics. The results show a very well representation of monthly discharges for a large portion of Peruvian sub-basins (KGE ≥ 0.75, NSEsqrt ≥ 0.65, and −0.29 < WBE < 0.23). Finally, this study introduces a product of continuous monthly discharge rates in Peru, named PISCO_HyM_GR2M, to understand surface water balance in data-scarce sub-basins.Por paresapplication/pdfengMDPI AGhttps://www.mdpi.com/2073-4441/13/8/1048/htminfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de Américahttp://creativecommons.org/licenses/by-nc-nd/3.0/us/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIGR2MPrecipitationHidrologíaHidrogeologíaModelos y Simulaciónhttps://purl.org/pe-repo/ocde/ford#1.05.11precipitacion - Clima y Eventos NaturalesPISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020)info:eu-repo/semantics/articletext/publicacion cientificaORIGINALPISCO_HyM_GR2M-A-Model-of-Monthly-Water-Balance-in-Peru-1981-2020.pdfPISCO_HyM_GR2M-A-Model-of-Monthly-Water-Balance-in-Peru-1981-2020.pdfTexto Completoapplication/pdf6990156http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/927/1/PISCO_HyM_GR2M-A-Model-of-Monthly-Water-Balance-in-Peru-1981-2020.pdfe27301528b155a3cc85e047713d42d8eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/927/2/license_rdf9868ccc48a14c8d591352b6eaf7f6239MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/927/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTPISCO_HyM_GR2M-A-Model-of-Monthly-Water-Balance-in-Peru-1981-2020.pdf.txtPISCO_HyM_GR2M-A-Model-of-Monthly-Water-Balance-in-Peru-1981-2020.pdf.txtExtracted texttext/plain61132http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/927/4/PISCO_HyM_GR2M-A-Model-of-Monthly-Water-Balance-in-Peru-1981-2020.pdf.txt51a97fbb324f3c7a21de166efe0b9a15MD54THUMBNAILPISCO_HyM_GR2M-A-Model-of-Monthly-Water-Balance-in-Peru-1981-2020.pdf.jpgPISCO_HyM_GR2M-A-Model-of-Monthly-Water-Balance-in-Peru-1981-2020.pdf.jpgGenerated Thumbnailimage/jpeg6896http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/927/5/PISCO_HyM_GR2M-A-Model-of-Monthly-Water-Balance-in-Peru-1981-2020.pdf.jpgaa57402a85a987698fd57fabf53590bfMD5520.500.12542/927oai:repositorio.senamhi.gob.pe:20.500.12542/9272024-08-16 11:45:24.022Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.919782 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).