Modelo de calificación basado en redes neuronales para la predicción de riesgo crediticio: caja financiera
Descripción del Articulo
En el ámbito de las microfinanzas, surge la necesidad imperante de anticipar el riesgo crediticio de los clientes debido al crecimiento de los incumplimientos de pagos y la morosidad. Este estudio se enfoca en la predicción del riesgo crediticio tanto para individuos como para negocios, mediante un...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/20766 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/20766 |
| Nivel de acceso: | acceso abierto |
| Materia: | Redes neuronales Riesgo de crédito https://purl.org/pe-repo/ocde/ford#2.02.04 |
| Sumario: | En el ámbito de las microfinanzas, surge la necesidad imperante de anticipar el riesgo crediticio de los clientes debido al crecimiento de los incumplimientos de pagos y la morosidad. Este estudio se enfoca en la predicción del riesgo crediticio tanto para individuos como para negocios, mediante un modelo de calificación basado en análisis de ecuaciones estructurales y redes neuronales. El objetivo es discernir entre clientes de buen y mal perfil crediticio. Se empleó una base de datos construida a partir de los registros de desembolsos de préstamos efectuados por una entidad financiera de provincia durante el período 2022-2023. Para el análisis mediante ecuaciones estructurales, se seleccionó una muestra de 382 analistas de crédito y se evaluaron 28 variables distribuidas en 5 dimensiones (características del cliente, nivel de endeudamiento, datos demográficos, aspectos operativos y predicción del riesgo del cliente). Se obtuvo un coeficiente de determinación (R2) del 6% para las variables propuestas en cada dimensión. Por otro lado, se implementó una red neuronal con 28 neuronas de entrada, tres capas ocultas y una neurona de salida. Los pesos se ajustaron adaptativamente en función de la magnitud de la derivada del error durante el proceso de aprendizaje. Este enfoque arrojó una precisión del 91.5%, superando los resultados previamente reportados en la literatura para este contexto específico. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).