Desarrollo de un modelo de redes neuronales artificiales para la calificación crediticia en entidades financieras

Descripción del Articulo

In this research, an artificial neural network model was developed to predict the credit risk of clients in the financial system, surpassing traditional methods in accuracy, sensitivity, and specificity. Using data from Caja Sullana, which included 85 client records with variables such as income, cr...

Descripción completa

Detalles Bibliográficos
Autores: Diaz Panduro, Rollandk Valery, Vidal Mori, Patrick Steep
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad Nacional De La Amazonía Peruana
Repositorio:UNAPIquitos-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unapiquitos.edu.pe:20.500.12737/11734
Enlace del recurso:https://hdl.handle.net/20.500.12737/11734
Nivel de acceso:acceso abierto
Materia:Redes neuronales (Informática)
Capacidad crediticia
Riesgo de crédito
Instituciones financieras
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:In this research, an artificial neural network model was developed to predict the credit risk of clients in the financial system, surpassing traditional methods in accuracy, sensitivity, and specificity. Using data from Caja Sullana, which included 85 client records with variables such as income, credit history, and age, a cross-sectional non-experimental design was employed. The network, composed of an input layer, a hidden layer, and an output layer, was trained using a scaled conjugate gradient algorithm, standing out for its efficient and simple architecture. The results showed a 100% accuracy in training and testing, and a general accuracy of 98.25%, with outstanding sensitivity and specificity, thus validating the proposed hypotheses. This study demonstrates the capability of neural networks to significantly enhance credit risk evaluation, offering a powerful tool for credit decisions in the financial sector. The implications of this advancement are vast, promising more informed and precise risk management.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).