SARIMA-ANN hybrid models for forecasts of SARS-CoV-2 contagion in Perú

Descripción del Articulo

Hybrid ANN-ARIMA models have been built by remodeling, to make the forecasts of the new cases of infections by Covid-19 in Peru, for this the confirmed cases of Covid-19 were extracted and used between the period 06/03/20 until 02/28/21, from the open data platform of the Ministry of Health. The res...

Descripción completa

Detalles Bibliográficos
Autor: Ordoñez Mercado, Alipio Francisco
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
inglés
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/1332
Enlace del recurso:https://revistas.uni.edu.pe/index.php/iecos/article/view/1332
Nivel de acceso:acceso abierto
Materia:Modelos ARIMA
Redes Neuronales Autoregresivas
Perceptron Multicapas
Modelos híbridos NNAR-ARIMA
Modelos híbridos MLP-ARIMA
Models
Autoregressive Neural Networks
Multilayer Perceptron
Hybrid models NNAR-ARIMA
Hybrid models MLP-ARIMA
id REVUNI_bbe3cbd4f65547db478d5c13d6811124
oai_identifier_str oai:oai:revistas.uni.edu.pe:article/1332
network_acronym_str REVUNI
network_name_str Revistas - Universidad Nacional de Ingeniería
repository_id_str
spelling SARIMA-ANN hybrid models for forecasts of SARS-CoV-2 contagion in PerúModelos híbridos SARIMA-ANN para pronósticos de la COVID-19 en el PerúOrdoñez Mercado, Alipio FranciscoModelos ARIMARedes Neuronales AutoregresivasPerceptron MulticapasModelos híbridos NNAR-ARIMAModelos híbridos MLP-ARIMAModelsAutoregressive Neural NetworksMultilayer PerceptronHybrid models NNAR-ARIMAHybrid models MLP-ARIMAHybrid ANN-ARIMA models have been built by remodeling, to make the forecasts of the new cases of infections by Covid-19 in Peru, for this the confirmed cases of Covid-19 were extracted and used between the period 06/03/20 until 02/28/21, from the open data platform of the Ministry of Health. The results found indicate that the 02 best models correspond to the multiplicative hybrid model NNAR (27, 1, 6) * ARIMA (3, 0, 2) (1, 0, 1), and to the additive hybrid model NNAR (27, 1, 6) + ARIMA (1, 0, 1), whose values of the mean absolute percentage error (MAPE) differ by only 0.575%, thus providing almost the same forecasts. Considering the average of the MAPE values for the 03 best models of each modeling category, it has been determined that the NNAR-ARIMA hybrid models are better than the MLP-ARIMA hybrid models, that the NNAR + ARIMA additive hybrid models have a superiority of 1.20 % on the multiplicative hybrid models NNAR * ARIMA; while the superiority of the MLP + ARIMA additive hybrid model over the MLP * ARIMA multiplicative hybrid model reaches 2.31%.Se ha construido modelos híbridos ANN-ARIMA por remodelamiento, para realizar los pronósticos de los nuevos casos de contagios por Covid-19 en el Perú, para ello se extrajo y uso los casos confirmados de Covid-19 entre el periodo 06/03/20 hasta el 28/02/21, desde la plataforma de los datos abiertos del Ministerio de Salud. Los resultados hallados indican que los 02 mejores modelos corresponden al modelo hibrido multiplicativo NNAR (27,1,6) * ARIMA(3,0,2)(1,0,1), y al modelo hibrido aditivo NNAR (27,1,6) + ARIMA(1,0,1), cuyos valores del error medio absoluto porcentual(MAPE) se diferencian en tan solo el 0.575% por lo que proporcionan casi los mismos pronósticos. Considerando el promedio de los valores del MAPE para los 03 mejores modelos de cada categoría de modelamiento se ha determinado que los modelos híbridos NNAR-ARIMA son mejores que los modelos híbridos MLP-ARIMA, que modelos híbridos aditivos NNAR+ARIMA tienen una superioridad del 1.20% sobre los modelos híbridos multiplicativos NNAR*ARIMA; mientras que la superioridad del modelo hibrido aditivo MLP+ARIMA sobre el modelo hibrido multiplicativo MLP*ARIMA alcanza al 2.31%.Universidad Nacional de Ingeniería2021-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer ReviewedEvaluado por paresapplication/pdfaudio/mpegaudio/mpeghttps://revistas.uni.edu.pe/index.php/iecos/article/view/133210.21754/iecos.v22i1.1332revista IECOS; Vol. 22 No. 1 (2021); 7-22Revista IECOS; Vol. 22 Núm. 1 (2021); 7-222788-74802961-284510.21754/iecos.v22i1reponame:Revistas - Universidad Nacional de Ingenieríainstname:Universidad Nacional de Ingenieríainstacron:UNIspaenghttps://revistas.uni.edu.pe/index.php/iecos/article/view/1332/1842https://revistas.uni.edu.pe/index.php/iecos/article/view/1332/3215https://revistas.uni.edu.pe/index.php/iecos/article/view/1332/3216Derechos de autor 2021 Alipio Francisco Ordoñez Mercadohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:oai:revistas.uni.edu.pe:article/13322025-01-22T20:01:52Z
dc.title.none.fl_str_mv SARIMA-ANN hybrid models for forecasts of SARS-CoV-2 contagion in Perú
Modelos híbridos SARIMA-ANN para pronósticos de la COVID-19 en el Perú
title SARIMA-ANN hybrid models for forecasts of SARS-CoV-2 contagion in Perú
spellingShingle SARIMA-ANN hybrid models for forecasts of SARS-CoV-2 contagion in Perú
Ordoñez Mercado, Alipio Francisco
Modelos ARIMA
Redes Neuronales Autoregresivas
Perceptron Multicapas
Modelos híbridos NNAR-ARIMA
Modelos híbridos MLP-ARIMA
Models
Autoregressive Neural Networks
Multilayer Perceptron
Hybrid models NNAR-ARIMA
Hybrid models MLP-ARIMA
title_short SARIMA-ANN hybrid models for forecasts of SARS-CoV-2 contagion in Perú
title_full SARIMA-ANN hybrid models for forecasts of SARS-CoV-2 contagion in Perú
title_fullStr SARIMA-ANN hybrid models for forecasts of SARS-CoV-2 contagion in Perú
title_full_unstemmed SARIMA-ANN hybrid models for forecasts of SARS-CoV-2 contagion in Perú
title_sort SARIMA-ANN hybrid models for forecasts of SARS-CoV-2 contagion in Perú
dc.creator.none.fl_str_mv Ordoñez Mercado, Alipio Francisco
author Ordoñez Mercado, Alipio Francisco
author_facet Ordoñez Mercado, Alipio Francisco
author_role author
dc.subject.none.fl_str_mv Modelos ARIMA
Redes Neuronales Autoregresivas
Perceptron Multicapas
Modelos híbridos NNAR-ARIMA
Modelos híbridos MLP-ARIMA
Models
Autoregressive Neural Networks
Multilayer Perceptron
Hybrid models NNAR-ARIMA
Hybrid models MLP-ARIMA
topic Modelos ARIMA
Redes Neuronales Autoregresivas
Perceptron Multicapas
Modelos híbridos NNAR-ARIMA
Modelos híbridos MLP-ARIMA
Models
Autoregressive Neural Networks
Multilayer Perceptron
Hybrid models NNAR-ARIMA
Hybrid models MLP-ARIMA
description Hybrid ANN-ARIMA models have been built by remodeling, to make the forecasts of the new cases of infections by Covid-19 in Peru, for this the confirmed cases of Covid-19 were extracted and used between the period 06/03/20 until 02/28/21, from the open data platform of the Ministry of Health. The results found indicate that the 02 best models correspond to the multiplicative hybrid model NNAR (27, 1, 6) * ARIMA (3, 0, 2) (1, 0, 1), and to the additive hybrid model NNAR (27, 1, 6) + ARIMA (1, 0, 1), whose values of the mean absolute percentage error (MAPE) differ by only 0.575%, thus providing almost the same forecasts. Considering the average of the MAPE values for the 03 best models of each modeling category, it has been determined that the NNAR-ARIMA hybrid models are better than the MLP-ARIMA hybrid models, that the NNAR + ARIMA additive hybrid models have a superiority of 1.20 % on the multiplicative hybrid models NNAR * ARIMA; while the superiority of the MLP + ARIMA additive hybrid model over the MLP * ARIMA multiplicative hybrid model reaches 2.31%.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer Reviewed
Evaluado por pares
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uni.edu.pe/index.php/iecos/article/view/1332
10.21754/iecos.v22i1.1332
url https://revistas.uni.edu.pe/index.php/iecos/article/view/1332
identifier_str_mv 10.21754/iecos.v22i1.1332
dc.language.none.fl_str_mv spa
eng
language spa
eng
dc.relation.none.fl_str_mv https://revistas.uni.edu.pe/index.php/iecos/article/view/1332/1842
https://revistas.uni.edu.pe/index.php/iecos/article/view/1332/3215
https://revistas.uni.edu.pe/index.php/iecos/article/view/1332/3216
dc.rights.none.fl_str_mv Derechos de autor 2021 Alipio Francisco Ordoñez Mercado
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2021 Alipio Francisco Ordoñez Mercado
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
audio/mpeg
audio/mpeg
dc.publisher.none.fl_str_mv Universidad Nacional de Ingeniería
publisher.none.fl_str_mv Universidad Nacional de Ingeniería
dc.source.none.fl_str_mv revista IECOS; Vol. 22 No. 1 (2021); 7-22
Revista IECOS; Vol. 22 Núm. 1 (2021); 7-22
2788-7480
2961-2845
10.21754/iecos.v22i1
reponame:Revistas - Universidad Nacional de Ingeniería
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str Revistas - Universidad Nacional de Ingeniería
collection Revistas - Universidad Nacional de Ingeniería
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1833562790342688768
score 13.940932
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).