SARIMA-ANN hybrid models for forecasts of SARS-CoV-2 contagion in Perú

Descripción del Articulo

Hybrid ANN-ARIMA models have been built by remodeling, to make the forecasts of the new cases of infections by Covid-19 in Peru, for this the confirmed cases of Covid-19 were extracted and used between the period 06/03/20 until 02/28/21, from the open data platform of the Ministry of Health. The res...

Descripción completa

Detalles Bibliográficos
Autor: Ordoñez Mercado, Alipio Francisco
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
inglés
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/1332
Enlace del recurso:https://revistas.uni.edu.pe/index.php/iecos/article/view/1332
Nivel de acceso:acceso abierto
Materia:Modelos ARIMA
Redes Neuronales Autoregresivas
Perceptron Multicapas
Modelos híbridos NNAR-ARIMA
Modelos híbridos MLP-ARIMA
Models
Autoregressive Neural Networks
Multilayer Perceptron
Hybrid models NNAR-ARIMA
Hybrid models MLP-ARIMA
Descripción
Sumario:Hybrid ANN-ARIMA models have been built by remodeling, to make the forecasts of the new cases of infections by Covid-19 in Peru, for this the confirmed cases of Covid-19 were extracted and used between the period 06/03/20 until 02/28/21, from the open data platform of the Ministry of Health. The results found indicate that the 02 best models correspond to the multiplicative hybrid model NNAR (27, 1, 6) * ARIMA (3, 0, 2) (1, 0, 1), and to the additive hybrid model NNAR (27, 1, 6) + ARIMA (1, 0, 1), whose values of the mean absolute percentage error (MAPE) differ by only 0.575%, thus providing almost the same forecasts. Considering the average of the MAPE values for the 03 best models of each modeling category, it has been determined that the NNAR-ARIMA hybrid models are better than the MLP-ARIMA hybrid models, that the NNAR + ARIMA additive hybrid models have a superiority of 1.20 % on the multiplicative hybrid models NNAR * ARIMA; while the superiority of the MLP + ARIMA additive hybrid model over the MLP * ARIMA multiplicative hybrid model reaches 2.31%.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).