Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem

Descripción del Articulo

In this work, the authors perturb the Euclidean plane with a constant vector field of the form W = (0, ε) with 0 ≤ ε < 1, which can be interpreted as wind currents affecting the movement of ships in a constant unidirectional way. It is observed that the resulting perturbed norm, called the ε-...

Descripción completa

Detalles Bibliográficos
Autores: Lujerio Garcia, Dik D., Solórzano Chávez, Newton M., Molina Morales, Marck A., Cerna Maguiña, Bibiano M.
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6642
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6642
Nivel de acceso:acceso abierto
Materia:Finsler metric
ε-euclidian metric
Zermelo navigation problem
non-euclidean geometry
Métrica Finsler
ε-métrica euclidiana
problema navegacional de Zermelo
Geometría no euclidiana
id REVUNITRU_93ccf1a6e9d18669a483aeb915800937
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/6642
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
dc.title.none.fl_str_mv Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem
Espacio euclidiano perturbado por un campo vectorial constante y su relación con un problema de navegación de Zermelo
Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem
title Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem
spellingShingle Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem
Lujerio Garcia, Dik D.
Finsler metric
ε-euclidian metric
Zermelo navigation problem
non-euclidean geometry
Métrica Finsler
ε-métrica euclidiana
problema navegacional de Zermelo
Geometría no euclidiana
Finsler metric
ε-euclidian metric
Zermelo navigation problem
non-euclidean geometry
title_short Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem
title_full Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem
title_fullStr Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem
title_full_unstemmed Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem
title_sort Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem
dc.creator.none.fl_str_mv Lujerio Garcia, Dik D.
Solórzano Chávez, Newton M.
Molina Morales, Marck A.
Cerna Maguiña, Bibiano M.
author Lujerio Garcia, Dik D.
author_facet Lujerio Garcia, Dik D.
Solórzano Chávez, Newton M.
Molina Morales, Marck A.
Cerna Maguiña, Bibiano M.
author_role author
author2 Solórzano Chávez, Newton M.
Molina Morales, Marck A.
Cerna Maguiña, Bibiano M.
author2_role author
author
author
dc.subject.none.fl_str_mv Finsler metric
ε-euclidian metric
Zermelo navigation problem
non-euclidean geometry
Métrica Finsler
ε-métrica euclidiana
problema navegacional de Zermelo
Geometría no euclidiana
Finsler metric
ε-euclidian metric
Zermelo navigation problem
non-euclidean geometry
topic Finsler metric
ε-euclidian metric
Zermelo navigation problem
non-euclidean geometry
Métrica Finsler
ε-métrica euclidiana
problema navegacional de Zermelo
Geometría no euclidiana
Finsler metric
ε-euclidian metric
Zermelo navigation problem
non-euclidean geometry
description In this work, the authors perturb the Euclidean plane with a constant vector field of the form W = (0, ε) with 0 ≤ ε < 1, which can be interpreted as wind currents affecting the movement of ships in a constant unidirectional way. It is observed that the resulting perturbed norm, called the ε-Euclidean metric, which is non-reversible, is a Finsler metric. In this way, a new non-Euclidean geometry is introduced. With this, the ε-Euclidean distance is induced and defined. This new way of measuring point-to-point distances can be interpreted, physically, as optimal travel time. Due to the non-reversibility of the ε-Euclidean metric, two types of circumferences are defined and characterized. Distance formulas (or optimal travel time) from point to line, from line to point, and from line to line are obtained, as well as a geometric construction technique for obtaining the distance from a point to a parabola, which can be adapted to other curves that simulate the Edge of a beach. Examples and graphs are presented for a better understanding of the work.
publishDate 2025
dc.date.none.fl_str_mv 2025-07-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6642
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6642
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6642/6874
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 15 - 32
Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 15 - 32
Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 15 - 32
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1849057838585872384
spelling Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problemEspacio euclidiano perturbado por un campo vectorial constante y su relación con un problema de navegación de ZermeloEuclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problemLujerio Garcia, Dik D.Solórzano Chávez, Newton M.Molina Morales, Marck A.Cerna Maguiña, Bibiano M.Finsler metricε-euclidian metricZermelo navigation problemnon-euclidean geometryMétrica Finslerε-métrica euclidianaproblema navegacional de ZermeloGeometría no euclidianaFinsler metricε-euclidian metricZermelo navigation problemnon-euclidean geometryIn this work, the authors perturb the Euclidean plane with a constant vector field of the form W = (0, ε) with 0 ≤ ε < 1, which can be interpreted as wind currents affecting the movement of ships in a constant unidirectional way. It is observed that the resulting perturbed norm, called the ε-Euclidean metric, which is non-reversible, is a Finsler metric. In this way, a new non-Euclidean geometry is introduced. With this, the ε-Euclidean distance is induced and defined. This new way of measuring point-to-point distances can be interpreted, physically, as optimal travel time. Due to the non-reversibility of the ε-Euclidean metric, two types of circumferences are defined and characterized. Distance formulas (or optimal travel time) from point to line, from line to point, and from line to line are obtained, as well as a geometric construction technique for obtaining the distance from a point to a parabola, which can be adapted to other curves that simulate the Edge of a beach. Examples and graphs are presented for a better understanding of the work. En este trabajo, los autores perturban el plano euclidiano con un campo vectorial constante de la forma W = (0, ε) con 0 ≤ ε < 1, el cual puede ser interpretado como corrientes de viento afectando el movimiento de embarcaciones de manera unidireccional constante. Se observa que la norma perturbada resultante, llamada ε-métrica euclidiana, la cual es no reversible, es una métrica Finsler. De esta forma, se introduce una nueva geometría no euclidiana. Con esta ε-métrica euclidiana se induce y se define la ε-distancia euclidiana. Esta nueva forma de medir distancias de punto a punto puede ser interpretada, físicamente, como tiempo de viaje óptimo. Debido a la no reversibilidad de la ε-métrica euclidiana, son definidas y caracterizadas dos tipos de circunferencias. Son obtenidas fórmulas de distancias (o tiempo de viaje óptimo) de punto a recta, de recta a punto y de recta a recta, así como también se presenta una técnica de construcción geométrica para la obtención de distancia de punto a parábola, el cual puede ser adaptada a otras curvas que simulan el borde de una playa. Ejemplos y gráficos son presentados para una mejor comprensión del trabajo.In this work, the authors perturb the Euclidean plane with a constant vector field of the form W = (0, ε) with 0 ≤ ε < 1, which can be interpreted as wind currents affecting the movement of ships in a constant unidirectional way. It is observed that the resulting perturbed norm, called the ε-Euclidean metric, which is non-reversible, is a Finsler metric. In this way, a new non-Euclidean geometry is introduced. With this, the ε-Euclidean distance is induced and defined. This new way of measuring point-to-point distances can be interpreted, physically, as optimal travel time. Due to the non-reversibility of the ε-Euclidean metric, two types of circumferences are defined and characterized. Distance formulas (or optimal travel time) from point to line, from line to point, and from line to line are obtained, as well as a geometric construction technique for obtaining the distance from a point to a parabola, which can be adapted to other curves that simulate the Edge of a beach. Examples and graphs are presented for a better understanding of the work.National University of Trujillo - Academic Department of Mathematics2025-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6642Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 15 - 32Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 15 - 32Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 15 - 322411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6642/6874https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/66422025-07-26T15:43:48Z
score 13.350691
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).