Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem
Descripción del Articulo
In this work, the authors perturb the Euclidean plane with a constant vector field of the form W = (0, ε) with 0 ≤ ε < 1, which can be interpreted as wind currents affecting the movement of ships in a constant unidirectional way. It is observed that the resulting perturbed norm, called the ε-...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/6642 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6642 |
| Nivel de acceso: | acceso abierto |
| Materia: | Finsler metric ε-euclidian metric Zermelo navigation problem non-euclidean geometry Métrica Finsler ε-métrica euclidiana problema navegacional de Zermelo Geometría no euclidiana |
| id |
REVUNITRU_93ccf1a6e9d18669a483aeb915800937 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/6642 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem Espacio euclidiano perturbado por un campo vectorial constante y su relación con un problema de navegación de Zermelo Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem |
| title |
Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem |
| spellingShingle |
Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem Lujerio Garcia, Dik D. Finsler metric ε-euclidian metric Zermelo navigation problem non-euclidean geometry Métrica Finsler ε-métrica euclidiana problema navegacional de Zermelo Geometría no euclidiana Finsler metric ε-euclidian metric Zermelo navigation problem non-euclidean geometry |
| title_short |
Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem |
| title_full |
Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem |
| title_fullStr |
Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem |
| title_full_unstemmed |
Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem |
| title_sort |
Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem |
| dc.creator.none.fl_str_mv |
Lujerio Garcia, Dik D. Solórzano Chávez, Newton M. Molina Morales, Marck A. Cerna Maguiña, Bibiano M. |
| author |
Lujerio Garcia, Dik D. |
| author_facet |
Lujerio Garcia, Dik D. Solórzano Chávez, Newton M. Molina Morales, Marck A. Cerna Maguiña, Bibiano M. |
| author_role |
author |
| author2 |
Solórzano Chávez, Newton M. Molina Morales, Marck A. Cerna Maguiña, Bibiano M. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Finsler metric ε-euclidian metric Zermelo navigation problem non-euclidean geometry Métrica Finsler ε-métrica euclidiana problema navegacional de Zermelo Geometría no euclidiana Finsler metric ε-euclidian metric Zermelo navigation problem non-euclidean geometry |
| topic |
Finsler metric ε-euclidian metric Zermelo navigation problem non-euclidean geometry Métrica Finsler ε-métrica euclidiana problema navegacional de Zermelo Geometría no euclidiana Finsler metric ε-euclidian metric Zermelo navigation problem non-euclidean geometry |
| description |
In this work, the authors perturb the Euclidean plane with a constant vector field of the form W = (0, ε) with 0 ≤ ε < 1, which can be interpreted as wind currents affecting the movement of ships in a constant unidirectional way. It is observed that the resulting perturbed norm, called the ε-Euclidean metric, which is non-reversible, is a Finsler metric. In this way, a new non-Euclidean geometry is introduced. With this, the ε-Euclidean distance is induced and defined. This new way of measuring point-to-point distances can be interpreted, physically, as optimal travel time. Due to the non-reversibility of the ε-Euclidean metric, two types of circumferences are defined and characterized. Distance formulas (or optimal travel time) from point to line, from line to point, and from line to line are obtained, as well as a geometric construction technique for obtaining the distance from a point to a parabola, which can be adapted to other curves that simulate the Edge of a beach. Examples and graphs are presented for a better understanding of the work. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-07-26 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6642 |
| url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6642 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6642/6874 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 15 - 32 Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 15 - 32 Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 15 - 32 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1849057838585872384 |
| spelling |
Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problemEspacio euclidiano perturbado por un campo vectorial constante y su relación con un problema de navegación de ZermeloEuclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problemLujerio Garcia, Dik D.Solórzano Chávez, Newton M.Molina Morales, Marck A.Cerna Maguiña, Bibiano M.Finsler metricε-euclidian metricZermelo navigation problemnon-euclidean geometryMétrica Finslerε-métrica euclidianaproblema navegacional de ZermeloGeometría no euclidianaFinsler metricε-euclidian metricZermelo navigation problemnon-euclidean geometryIn this work, the authors perturb the Euclidean plane with a constant vector field of the form W = (0, ε) with 0 ≤ ε < 1, which can be interpreted as wind currents affecting the movement of ships in a constant unidirectional way. It is observed that the resulting perturbed norm, called the ε-Euclidean metric, which is non-reversible, is a Finsler metric. In this way, a new non-Euclidean geometry is introduced. With this, the ε-Euclidean distance is induced and defined. This new way of measuring point-to-point distances can be interpreted, physically, as optimal travel time. Due to the non-reversibility of the ε-Euclidean metric, two types of circumferences are defined and characterized. Distance formulas (or optimal travel time) from point to line, from line to point, and from line to line are obtained, as well as a geometric construction technique for obtaining the distance from a point to a parabola, which can be adapted to other curves that simulate the Edge of a beach. Examples and graphs are presented for a better understanding of the work. En este trabajo, los autores perturban el plano euclidiano con un campo vectorial constante de la forma W = (0, ε) con 0 ≤ ε < 1, el cual puede ser interpretado como corrientes de viento afectando el movimiento de embarcaciones de manera unidireccional constante. Se observa que la norma perturbada resultante, llamada ε-métrica euclidiana, la cual es no reversible, es una métrica Finsler. De esta forma, se introduce una nueva geometría no euclidiana. Con esta ε-métrica euclidiana se induce y se define la ε-distancia euclidiana. Esta nueva forma de medir distancias de punto a punto puede ser interpretada, físicamente, como tiempo de viaje óptimo. Debido a la no reversibilidad de la ε-métrica euclidiana, son definidas y caracterizadas dos tipos de circunferencias. Son obtenidas fórmulas de distancias (o tiempo de viaje óptimo) de punto a recta, de recta a punto y de recta a recta, así como también se presenta una técnica de construcción geométrica para la obtención de distancia de punto a parábola, el cual puede ser adaptada a otras curvas que simulan el borde de una playa. Ejemplos y gráficos son presentados para una mejor comprensión del trabajo.In this work, the authors perturb the Euclidean plane with a constant vector field of the form W = (0, ε) with 0 ≤ ε < 1, which can be interpreted as wind currents affecting the movement of ships in a constant unidirectional way. It is observed that the resulting perturbed norm, called the ε-Euclidean metric, which is non-reversible, is a Finsler metric. In this way, a new non-Euclidean geometry is introduced. With this, the ε-Euclidean distance is induced and defined. This new way of measuring point-to-point distances can be interpreted, physically, as optimal travel time. Due to the non-reversibility of the ε-Euclidean metric, two types of circumferences are defined and characterized. Distance formulas (or optimal travel time) from point to line, from line to point, and from line to line are obtained, as well as a geometric construction technique for obtaining the distance from a point to a parabola, which can be adapted to other curves that simulate the Edge of a beach. Examples and graphs are presented for a better understanding of the work.National University of Trujillo - Academic Department of Mathematics2025-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6642Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 15 - 32Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 15 - 32Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 15 - 322411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6642/6874https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/66422025-07-26T15:43:48Z |
| score |
13.350691 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).