Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem

Descripción del Articulo

In this work, the authors perturb the Euclidean plane with a constant vector field of the form W = (0, ε) with 0 ≤ ε < 1, which can be interpreted as wind currents affecting the movement of ships in a constant unidirectional way. It is observed that the resulting perturbed norm, called the ε-...

Descripción completa

Detalles Bibliográficos
Autores: Lujerio Garcia, Dik D., Solórzano Chávez, Newton M., Molina Morales, Marck A., Cerna Maguiña, Bibiano M.
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6642
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6642
Nivel de acceso:acceso abierto
Materia:Finsler metric
ε-euclidian metric
Zermelo navigation problem
non-euclidean geometry
Métrica Finsler
ε-métrica euclidiana
problema navegacional de Zermelo
Geometría no euclidiana
Descripción
Sumario:In this work, the authors perturb the Euclidean plane with a constant vector field of the form W = (0, ε) with 0 ≤ ε < 1, which can be interpreted as wind currents affecting the movement of ships in a constant unidirectional way. It is observed that the resulting perturbed norm, called the ε-Euclidean metric, which is non-reversible, is a Finsler metric. In this way, a new non-Euclidean geometry is introduced. With this, the ε-Euclidean distance is induced and defined. This new way of measuring point-to-point distances can be interpreted, physically, as optimal travel time. Due to the non-reversibility of the ε-Euclidean metric, two types of circumferences are defined and characterized. Distance formulas (or optimal travel time) from point to line, from line to point, and from line to line are obtained, as well as a geometric construction technique for obtaining the distance from a point to a parabola, which can be adapted to other curves that simulate the Edge of a beach. Examples and graphs are presented for a better understanding of the work.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).