Yield estimation based on agronomic traits in vegetables under different biochar levels
Descripción del Articulo
Biochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in...
| Autores: | , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.inia.gob.pe:20.500.12955/2935 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12955/2935 https://doi.org/10.1016/j.scienta.2025.114425 |
| Nivel de acceso: | acceso abierto |
| Materia: | Biochar Vegetables Machine learning Spectral índices Sustainable agricultura Yield prediction Biocarbón Hortalizas Aprendizaje automático Índices espectrales Agricultura sostenible Predicción de rendimiento. https://purl.org/pe-repo/ocde/ford#4.01.01 Espinaca; Basella alba; Repollo; Cabbages; Acelga; Chard; Rendimiento de cultivos; Crop yield; Región andina; Andean region |
| id |
INIA_2860bc36c137a28ee7cdc837ecc5893e |
|---|---|
| oai_identifier_str |
oai:repositorio.inia.gob.pe:20.500.12955/2935 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.none.fl_str_mv |
Yield estimation based on agronomic traits in vegetables under different biochar levels |
| title |
Yield estimation based on agronomic traits in vegetables under different biochar levels |
| spellingShingle |
Yield estimation based on agronomic traits in vegetables under different biochar levels Ccopi Trucios, Dennis Biochar Vegetables Machine learning Spectral índices Sustainable agricultura Yield prediction Biocarbón Hortalizas Aprendizaje automático Índices espectrales Agricultura sostenible Predicción de rendimiento. https://purl.org/pe-repo/ocde/ford#4.01.01 Espinaca; Basella alba; Repollo; Cabbages; Acelga; Chard; Rendimiento de cultivos; Crop yield; Región andina; Andean region |
| title_short |
Yield estimation based on agronomic traits in vegetables under different biochar levels |
| title_full |
Yield estimation based on agronomic traits in vegetables under different biochar levels |
| title_fullStr |
Yield estimation based on agronomic traits in vegetables under different biochar levels |
| title_full_unstemmed |
Yield estimation based on agronomic traits in vegetables under different biochar levels |
| title_sort |
Yield estimation based on agronomic traits in vegetables under different biochar levels |
| author |
Ccopi Trucios, Dennis |
| author_facet |
Ccopi Trucios, Dennis Requena Rojas, Edilson Jimmy Arias Arredondo, Alberto Taipe Crispin, Maglorio Marcelo Matero, Jhonny Demis Pizarro Carcausto, Samuel Edwin |
| author_role |
author |
| author2 |
Requena Rojas, Edilson Jimmy Arias Arredondo, Alberto Taipe Crispin, Maglorio Marcelo Matero, Jhonny Demis Pizarro Carcausto, Samuel Edwin |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Ccopi Trucios, Dennis Requena Rojas, Edilson Jimmy Arias Arredondo, Alberto Taipe Crispin, Maglorio Marcelo Matero, Jhonny Demis Pizarro Carcausto, Samuel Edwin |
| dc.subject.none.fl_str_mv |
Biochar Vegetables Machine learning Spectral índices Sustainable agricultura Yield prediction Biocarbón Hortalizas Aprendizaje automático Índices espectrales Agricultura sostenible Predicción de rendimiento. |
| topic |
Biochar Vegetables Machine learning Spectral índices Sustainable agricultura Yield prediction Biocarbón Hortalizas Aprendizaje automático Índices espectrales Agricultura sostenible Predicción de rendimiento. https://purl.org/pe-repo/ocde/ford#4.01.01 Espinaca; Basella alba; Repollo; Cabbages; Acelga; Chard; Rendimiento de cultivos; Crop yield; Región andina; Andean region |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.01 |
| dc.subject.agrovoc.none.fl_str_mv |
Espinaca; Basella alba; Repollo; Cabbages; Acelga; Chard; Rendimiento de cultivos; Crop yield; Región andina; Andean region |
| description |
Biochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in high Andean conditions: spinach (Spinacia oleracea L.), cabbage (Brassica oleracea var.), and chard (Beta vulgaris var.). The study implemented four biochar application rates (0, 10, 20, and 30 t/ha) and measured comprehensive agronomic parameters including leaf count, leaf length, and fresh/dry biomass of both leaves and roots. Simultaneously, UAV-captured multispectral imagery provided spectral indices that were integrated with agronomic data into machine learning models: linear regression, support vector machines (SVM), and regression trees (CART). Results demonstrated significant vegetative growth enhancement and yield increases across all crops, with the 30 t ha-1 application rate producing optimal outcomes. Predictive modeling exhibited remarkable accuracy: spinach analysis via SVM achieved R² = 0.94 and RMSE = 0.32 g; chard analysis through CART delivered R² = 0.92 and RMSE = 0.35 g; and cabbage assessment using CART yielded R² = 0.91 and RMSE = 0.38 g. This research substantiates biochar’s effectiveness as an organic amendment while establishing a reliable framework for crop yield prediction using machine learning algorithms integrated with spectral data. These findings position biochar as a valuable component in sustainable agricultural systems, particularly for vegetable production in challenging high-altitude environments. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-12T20:21:06Z |
| dc.date.available.none.fl_str_mv |
2025-11-12T20:21:06Z |
| dc.date.issued.fl_str_mv |
2025-09-29 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.none.fl_str_mv |
Ccopi, D., Requena-Rojas, E., Arias-Arredondo, A., Taipe, M., Marcelo, J., & Pizarro, S. (2025). Yield estimation based on agronomic traits in vegetables under different biochar levels. Scientia Horticulturae, 352, 114425. https://doi.org/10.1016/j.scienta.2025.114425 |
| dc.identifier.issn.none.fl_str_mv |
1879-1018 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12955/2935 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.scienta.2025.114425 |
| identifier_str_mv |
Ccopi, D., Requena-Rojas, E., Arias-Arredondo, A., Taipe, M., Marcelo, J., & Pizarro, S. (2025). Yield estimation based on agronomic traits in vegetables under different biochar levels. Scientia Horticulturae, 352, 114425. https://doi.org/10.1016/j.scienta.2025.114425 1879-1018 |
| url |
http://hdl.handle.net/20.500.12955/2935 https://doi.org/10.1016/j.scienta.2025.114425 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:0304-4238 |
| dc.relation.ispartofseries.none.fl_str_mv |
Scientia Horticulturae |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier B.V. |
| dc.publisher.country.none.fl_str_mv |
NL |
| publisher.none.fl_str_mv |
Elsevier B.V. |
| dc.source.none.fl_str_mv |
Instituto Nacional de Innovación Agraria reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.none.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/e78b0de6-be45-4e43-8f75-6fc60f7ede4c/download https://repositorio.inia.gob.pe/bitstreams/636c0a44-f5ea-4bbb-953a-a49e3ece3658/download |
| bitstream.checksum.fl_str_mv |
a1dff3722e05e29dac20fa1a97a12ccf e5080ea03c90be2b92a3d2b051ffd384 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1849820215332831232 |
| spelling |
Ccopi Trucios, DennisRequena Rojas, Edilson JimmyArias Arredondo, AlbertoTaipe Crispin, MaglorioMarcelo Matero, Jhonny DemisPizarro Carcausto, Samuel Edwin2025-11-12T20:21:06Z2025-11-12T20:21:06Z2025-09-29Ccopi, D., Requena-Rojas, E., Arias-Arredondo, A., Taipe, M., Marcelo, J., & Pizarro, S. (2025). Yield estimation based on agronomic traits in vegetables under different biochar levels. Scientia Horticulturae, 352, 114425. https://doi.org/10.1016/j.scienta.2025.1144251879-1018http://hdl.handle.net/20.500.12955/2935https://doi.org/10.1016/j.scienta.2025.114425Biochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in high Andean conditions: spinach (Spinacia oleracea L.), cabbage (Brassica oleracea var.), and chard (Beta vulgaris var.). The study implemented four biochar application rates (0, 10, 20, and 30 t/ha) and measured comprehensive agronomic parameters including leaf count, leaf length, and fresh/dry biomass of both leaves and roots. Simultaneously, UAV-captured multispectral imagery provided spectral indices that were integrated with agronomic data into machine learning models: linear regression, support vector machines (SVM), and regression trees (CART). Results demonstrated significant vegetative growth enhancement and yield increases across all crops, with the 30 t ha-1 application rate producing optimal outcomes. Predictive modeling exhibited remarkable accuracy: spinach analysis via SVM achieved R² = 0.94 and RMSE = 0.32 g; chard analysis through CART delivered R² = 0.92 and RMSE = 0.35 g; and cabbage assessment using CART yielded R² = 0.91 and RMSE = 0.38 g. This research substantiates biochar’s effectiveness as an organic amendment while establishing a reliable framework for crop yield prediction using machine learning algorithms integrated with spectral data. These findings position biochar as a valuable component in sustainable agricultural systems, particularly for vegetable production in challenging high-altitude environments.This research was funded by the INIA project “Mejoramiento de los servicios de investigación y transferencia tecnológica en el manejo y recuperación de suelos agrícolas degradados y aguas para riego en la pequeña y mediana agricultura en los departamentos de Lima, Áncash, San Martín, Cajamarca, Lambayeque, Junín, Ayacucho, Arequipa, Puno y Ucayali” CUI 2487112, of the Ministry of Agrarian Development and Irrigation (MIDAGRI) of the Peruvian Government.application/pdfengElsevier B.V.NLurn:issn:0304-4238Scientia Horticulturaeinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIABiocharVegetablesMachine learningSpectral índicesSustainable agriculturaYield predictionBiocarbónHortalizasAprendizaje automáticoÍndices espectralesAgricultura sosteniblePredicción de rendimiento.https://purl.org/pe-repo/ocde/ford#4.01.01Espinaca; Basella alba; Repollo; Cabbages; Acelga; Chard; Rendimiento de cultivos; Crop yield; Región andina; Andean regionYield estimation based on agronomic traits in vegetables under different biochar levelsinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/e78b0de6-be45-4e43-8f75-6fc60f7ede4c/downloada1dff3722e05e29dac20fa1a97a12ccfMD51ORIGINALCcopi_et-al_2025_biochar_vegetables_yield estimation.pdfCcopi_et-al_2025_biochar_vegetables_yield estimation.pdfapplication/pdf12114124https://repositorio.inia.gob.pe/bitstreams/636c0a44-f5ea-4bbb-953a-a49e3ece3658/downloade5080ea03c90be2b92a3d2b051ffd384MD5120.500.12955/2935oai:repositorio.inia.gob.pe:20.500.12955/29352025-11-12 15:21:06.636https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg== |
| score |
13.949556 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).