Yield estimation based on agronomic traits in vegetables under different biochar levels

Descripción del Articulo

Biochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in...

Descripción completa

Detalles Bibliográficos
Autores: Ccopi Trucios, Dennis, Requena Rojas, Edilson Jimmy, Arias Arredondo, Alberto, Taipe Crispin, Maglorio, Marcelo Matero, Jhonny Demis, Pizarro Carcausto, Samuel Edwin
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2935
Enlace del recurso:http://hdl.handle.net/20.500.12955/2935
https://doi.org/10.1016/j.scienta.2025.114425
Nivel de acceso:acceso abierto
Materia:Biochar
Vegetables
Machine learning
Spectral índices
Sustainable agricultura
Yield prediction
Biocarbón
Hortalizas
Aprendizaje automático
Índices espectrales
Agricultura sostenible
Predicción de rendimiento.
https://purl.org/pe-repo/ocde/ford#4.01.01
Espinaca; Basella alba; Repollo; Cabbages; Acelga; Chard; Rendimiento de cultivos; Crop yield; Región andina; Andean region
id INIA_2860bc36c137a28ee7cdc837ecc5893e
oai_identifier_str oai:repositorio.inia.gob.pe:20.500.12955/2935
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.none.fl_str_mv Yield estimation based on agronomic traits in vegetables under different biochar levels
title Yield estimation based on agronomic traits in vegetables under different biochar levels
spellingShingle Yield estimation based on agronomic traits in vegetables under different biochar levels
Ccopi Trucios, Dennis
Biochar
Vegetables
Machine learning
Spectral índices
Sustainable agricultura
Yield prediction
Biocarbón
Hortalizas
Aprendizaje automático
Índices espectrales
Agricultura sostenible
Predicción de rendimiento.
https://purl.org/pe-repo/ocde/ford#4.01.01
Espinaca; Basella alba; Repollo; Cabbages; Acelga; Chard; Rendimiento de cultivos; Crop yield; Región andina; Andean region
title_short Yield estimation based on agronomic traits in vegetables under different biochar levels
title_full Yield estimation based on agronomic traits in vegetables under different biochar levels
title_fullStr Yield estimation based on agronomic traits in vegetables under different biochar levels
title_full_unstemmed Yield estimation based on agronomic traits in vegetables under different biochar levels
title_sort Yield estimation based on agronomic traits in vegetables under different biochar levels
author Ccopi Trucios, Dennis
author_facet Ccopi Trucios, Dennis
Requena Rojas, Edilson Jimmy
Arias Arredondo, Alberto
Taipe Crispin, Maglorio
Marcelo Matero, Jhonny Demis
Pizarro Carcausto, Samuel Edwin
author_role author
author2 Requena Rojas, Edilson Jimmy
Arias Arredondo, Alberto
Taipe Crispin, Maglorio
Marcelo Matero, Jhonny Demis
Pizarro Carcausto, Samuel Edwin
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Ccopi Trucios, Dennis
Requena Rojas, Edilson Jimmy
Arias Arredondo, Alberto
Taipe Crispin, Maglorio
Marcelo Matero, Jhonny Demis
Pizarro Carcausto, Samuel Edwin
dc.subject.none.fl_str_mv Biochar
Vegetables
Machine learning
Spectral índices
Sustainable agricultura
Yield prediction
Biocarbón
Hortalizas
Aprendizaje automático
Índices espectrales
Agricultura sostenible
Predicción de rendimiento.
topic Biochar
Vegetables
Machine learning
Spectral índices
Sustainable agricultura
Yield prediction
Biocarbón
Hortalizas
Aprendizaje automático
Índices espectrales
Agricultura sostenible
Predicción de rendimiento.
https://purl.org/pe-repo/ocde/ford#4.01.01
Espinaca; Basella alba; Repollo; Cabbages; Acelga; Chard; Rendimiento de cultivos; Crop yield; Región andina; Andean region
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.01
dc.subject.agrovoc.none.fl_str_mv Espinaca; Basella alba; Repollo; Cabbages; Acelga; Chard; Rendimiento de cultivos; Crop yield; Región andina; Andean region
description Biochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in high Andean conditions: spinach (Spinacia oleracea L.), cabbage (Brassica oleracea var.), and chard (Beta vulgaris var.). The study implemented four biochar application rates (0, 10, 20, and 30 t/ha) and measured comprehensive agronomic parameters including leaf count, leaf length, and fresh/dry biomass of both leaves and roots. Simultaneously, UAV-captured multispectral imagery provided spectral indices that were integrated with agronomic data into machine learning models: linear regression, support vector machines (SVM), and regression trees (CART). Results demonstrated significant vegetative growth enhancement and yield increases across all crops, with the 30 t ha-1 application rate producing optimal outcomes. Predictive modeling exhibited remarkable accuracy: spinach analysis via SVM achieved R² = 0.94 and RMSE = 0.32 g; chard analysis through CART delivered R² = 0.92 and RMSE = 0.35 g; and cabbage assessment using CART yielded R² = 0.91 and RMSE = 0.38 g. This research substantiates biochar’s effectiveness as an organic amendment while establishing a reliable framework for crop yield prediction using machine learning algorithms integrated with spectral data. These findings position biochar as a valuable component in sustainable agricultural systems, particularly for vegetable production in challenging high-altitude environments.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-11-12T20:21:06Z
dc.date.available.none.fl_str_mv 2025-11-12T20:21:06Z
dc.date.issued.fl_str_mv 2025-09-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Ccopi, D., Requena-Rojas, E., Arias-Arredondo, A., Taipe, M., Marcelo, J., & Pizarro, S. (2025). Yield estimation based on agronomic traits in vegetables under different biochar levels. Scientia Horticulturae, 352, 114425. https://doi.org/10.1016/j.scienta.2025.114425
dc.identifier.issn.none.fl_str_mv 1879-1018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12955/2935
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.scienta.2025.114425
identifier_str_mv Ccopi, D., Requena-Rojas, E., Arias-Arredondo, A., Taipe, M., Marcelo, J., & Pizarro, S. (2025). Yield estimation based on agronomic traits in vegetables under different biochar levels. Scientia Horticulturae, 352, 114425. https://doi.org/10.1016/j.scienta.2025.114425
1879-1018
url http://hdl.handle.net/20.500.12955/2935
https://doi.org/10.1016/j.scienta.2025.114425
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:0304-4238
dc.relation.ispartofseries.none.fl_str_mv Scientia Horticulturae
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.country.none.fl_str_mv NL
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Instituto Nacional de Innovación Agraria
reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.none.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/e78b0de6-be45-4e43-8f75-6fc60f7ede4c/download
https://repositorio.inia.gob.pe/bitstreams/636c0a44-f5ea-4bbb-953a-a49e3ece3658/download
bitstream.checksum.fl_str_mv a1dff3722e05e29dac20fa1a97a12ccf
e5080ea03c90be2b92a3d2b051ffd384
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1849820215332831232
spelling Ccopi Trucios, DennisRequena Rojas, Edilson JimmyArias Arredondo, AlbertoTaipe Crispin, MaglorioMarcelo Matero, Jhonny DemisPizarro Carcausto, Samuel Edwin2025-11-12T20:21:06Z2025-11-12T20:21:06Z2025-09-29Ccopi, D., Requena-Rojas, E., Arias-Arredondo, A., Taipe, M., Marcelo, J., & Pizarro, S. (2025). Yield estimation based on agronomic traits in vegetables under different biochar levels. Scientia Horticulturae, 352, 114425. https://doi.org/10.1016/j.scienta.2025.1144251879-1018http://hdl.handle.net/20.500.12955/2935https://doi.org/10.1016/j.scienta.2025.114425Biochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in high Andean conditions: spinach (Spinacia oleracea L.), cabbage (Brassica oleracea var.), and chard (Beta vulgaris var.). The study implemented four biochar application rates (0, 10, 20, and 30 t/ha) and measured comprehensive agronomic parameters including leaf count, leaf length, and fresh/dry biomass of both leaves and roots. Simultaneously, UAV-captured multispectral imagery provided spectral indices that were integrated with agronomic data into machine learning models: linear regression, support vector machines (SVM), and regression trees (CART). Results demonstrated significant vegetative growth enhancement and yield increases across all crops, with the 30 t ha-1 application rate producing optimal outcomes. Predictive modeling exhibited remarkable accuracy: spinach analysis via SVM achieved R² = 0.94 and RMSE = 0.32 g; chard analysis through CART delivered R² = 0.92 and RMSE = 0.35 g; and cabbage assessment using CART yielded R² = 0.91 and RMSE = 0.38 g. This research substantiates biochar’s effectiveness as an organic amendment while establishing a reliable framework for crop yield prediction using machine learning algorithms integrated with spectral data. These findings position biochar as a valuable component in sustainable agricultural systems, particularly for vegetable production in challenging high-altitude environments.This research was funded by the INIA project “Mejoramiento de los servicios de investigación y transferencia tecnológica en el manejo y recuperación de suelos agrícolas degradados y aguas para riego en la pequeña y mediana agricultura en los departamentos de Lima, Áncash, San Martín, Cajamarca, Lambayeque, Junín, Ayacucho, Arequipa, Puno y Ucayali” CUI 2487112, of the Ministry of Agrarian Development and Irrigation (MIDAGRI) of the Peruvian Government.application/pdfengElsevier B.V.NLurn:issn:0304-4238Scientia Horticulturaeinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIABiocharVegetablesMachine learningSpectral índicesSustainable agriculturaYield predictionBiocarbónHortalizasAprendizaje automáticoÍndices espectralesAgricultura sosteniblePredicción de rendimiento.https://purl.org/pe-repo/ocde/ford#4.01.01Espinaca; Basella alba; Repollo; Cabbages; Acelga; Chard; Rendimiento de cultivos; Crop yield; Región andina; Andean regionYield estimation based on agronomic traits in vegetables under different biochar levelsinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/e78b0de6-be45-4e43-8f75-6fc60f7ede4c/downloada1dff3722e05e29dac20fa1a97a12ccfMD51ORIGINALCcopi_et-al_2025_biochar_vegetables_yield estimation.pdfCcopi_et-al_2025_biochar_vegetables_yield estimation.pdfapplication/pdf12114124https://repositorio.inia.gob.pe/bitstreams/636c0a44-f5ea-4bbb-953a-a49e3ece3658/downloade5080ea03c90be2b92a3d2b051ffd384MD5120.500.12955/2935oai:repositorio.inia.gob.pe:20.500.12955/29352025-11-12 15:21:06.636https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg==
score 13.949556
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).