Yield estimation based on agronomic traits in vegetables under different biochar levels

Descripción del Articulo

Biochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in...

Descripción completa

Detalles Bibliográficos
Autores: Ccopi Trucios, Dennis, Requena Rojas, Edilson Jimmy, Arias Arredondo, Alberto, Taipe Crispin, Maglorio, Marcelo Matero, Jhonny Demis, Pizarro Carcausto, Samuel Edwin
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2935
Enlace del recurso:http://hdl.handle.net/20.500.12955/2935
https://doi.org/10.1016/j.scienta.2025.114425
Nivel de acceso:acceso abierto
Materia:Biochar
Vegetables
Machine learning
Spectral índices
Sustainable agricultura
Yield prediction
Biocarbón
Hortalizas
Aprendizaje automático
Índices espectrales
Agricultura sostenible
Predicción de rendimiento.
https://purl.org/pe-repo/ocde/ford#4.01.01
Espinaca; Basella alba; Repollo; Cabbages; Acelga; Chard; Rendimiento de cultivos; Crop yield; Región andina; Andean region
Descripción
Sumario:Biochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in high Andean conditions: spinach (Spinacia oleracea L.), cabbage (Brassica oleracea var.), and chard (Beta vulgaris var.). The study implemented four biochar application rates (0, 10, 20, and 30 t/ha) and measured comprehensive agronomic parameters including leaf count, leaf length, and fresh/dry biomass of both leaves and roots. Simultaneously, UAV-captured multispectral imagery provided spectral indices that were integrated with agronomic data into machine learning models: linear regression, support vector machines (SVM), and regression trees (CART). Results demonstrated significant vegetative growth enhancement and yield increases across all crops, with the 30 t ha-1 application rate producing optimal outcomes. Predictive modeling exhibited remarkable accuracy: spinach analysis via SVM achieved R² = 0.94 and RMSE = 0.32 g; chard analysis through CART delivered R² = 0.92 and RMSE = 0.35 g; and cabbage assessment using CART yielded R² = 0.91 and RMSE = 0.38 g. This research substantiates biochar’s effectiveness as an organic amendment while establishing a reliable framework for crop yield prediction using machine learning algorithms integrated with spectral data. These findings position biochar as a valuable component in sustainable agricultural systems, particularly for vegetable production in challenging high-altitude environments.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).