Yield estimation based on agronomic traits in vegetables under different biochar levels
Descripción del Articulo
Biochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in...
| Autores: | , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.inia.gob.pe:20.500.12955/2935 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12955/2935 https://doi.org/10.1016/j.scienta.2025.114425 |
| Nivel de acceso: | acceso abierto |
| Materia: | Biochar Vegetables Machine learning Spectral índices Sustainable agricultura Yield prediction Biocarbón Hortalizas Aprendizaje automático Índices espectrales Agricultura sostenible Predicción de rendimiento. https://purl.org/pe-repo/ocde/ford#4.01.01 Espinaca; Basella alba; Repollo; Cabbages; Acelga; Chard; Rendimiento de cultivos; Crop yield; Región andina; Andean region |
| Sumario: | Biochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in high Andean conditions: spinach (Spinacia oleracea L.), cabbage (Brassica oleracea var.), and chard (Beta vulgaris var.). The study implemented four biochar application rates (0, 10, 20, and 30 t/ha) and measured comprehensive agronomic parameters including leaf count, leaf length, and fresh/dry biomass of both leaves and roots. Simultaneously, UAV-captured multispectral imagery provided spectral indices that were integrated with agronomic data into machine learning models: linear regression, support vector machines (SVM), and regression trees (CART). Results demonstrated significant vegetative growth enhancement and yield increases across all crops, with the 30 t ha-1 application rate producing optimal outcomes. Predictive modeling exhibited remarkable accuracy: spinach analysis via SVM achieved R² = 0.94 and RMSE = 0.32 g; chard analysis through CART delivered R² = 0.92 and RMSE = 0.35 g; and cabbage assessment using CART yielded R² = 0.91 and RMSE = 0.38 g. This research substantiates biochar’s effectiveness as an organic amendment while establishing a reliable framework for crop yield prediction using machine learning algorithms integrated with spectral data. These findings position biochar as a valuable component in sustainable agricultural systems, particularly for vegetable production in challenging high-altitude environments. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).