Multilayer complex network descriptors for color-texture characterization

Descripción del Articulo

L. F. S. Scabini acknowledges support from CNPq (Grants #134558/2016-2 and #142438/2018-9). O. M. Bruno acknowledges support from CNPq (Grant #307797/2014-7 and Grant #484312/2013-8) and FAPESP (grant #14/08026-1 and #16/18809-9). R. H. M. Condori acknowledges support from Cienciactiva, an initiativ...

Descripción completa

Detalles Bibliográficos
Autores: Scabini, LFS, Condori, RHM, Goncalves, WN, Bruno, OM
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/981
Enlace del recurso:https://hdl.handle.net/20.500.12390/981
https://doi.org/10.1016/j.ins.2019.02.060
Nivel de acceso:acceso abierto
Materia:network dynamic
complex networks
multilayer complex network
https://purl.org/pe-repo/ocde/ford#1.02.02
id CONC_5ae62da8225d7aa9aa0338680fc0a3c4
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/981
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Multilayer complex network descriptors for color-texture characterization
title Multilayer complex network descriptors for color-texture characterization
spellingShingle Multilayer complex network descriptors for color-texture characterization
Scabini, LFS
network dynamic
complex networks
multilayer complex network
https://purl.org/pe-repo/ocde/ford#1.02.02
title_short Multilayer complex network descriptors for color-texture characterization
title_full Multilayer complex network descriptors for color-texture characterization
title_fullStr Multilayer complex network descriptors for color-texture characterization
title_full_unstemmed Multilayer complex network descriptors for color-texture characterization
title_sort Multilayer complex network descriptors for color-texture characterization
author Scabini, LFS
author_facet Scabini, LFS
Condori, RHM
Goncalves, WN
Bruno, OM
author_role author
author2 Condori, RHM
Goncalves, WN
Bruno, OM
author2_role author
author
author
dc.contributor.author.fl_str_mv Scabini, LFS
Condori, RHM
Goncalves, WN
Bruno, OM
dc.subject.none.fl_str_mv network dynamic
topic network dynamic
complex networks
multilayer complex network
https://purl.org/pe-repo/ocde/ford#1.02.02
dc.subject.es_PE.fl_str_mv complex networks
multilayer complex network
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.02
description L. F. S. Scabini acknowledges support from CNPq (Grants #134558/2016-2 and #142438/2018-9). O. M. Bruno acknowledges support from CNPq (Grant #307797/2014-7 and Grant #484312/2013-8) and FAPESP (grant #14/08026-1 and #16/18809-9). R. H. M. Condori acknowledges support from Cienciactiva, an initiative of the National Council of Science, Technology and Technological Innovation-CONCYTEC (Peru). W. N. Gonçalves acknowledges support from CNPq (Grant #304173/2016-9) and Fundect (Grant #071/2015). The authors are grateful to Abdelmounaime Safia for the feedback concerning the MBT dataset construction, and the NVIDIA GPU Grant Program for the donation of the Quadro P6000 and the Titan Xp GPUs used on this research.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/981
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.ins.2019.02.060
dc.identifier.isi.none.fl_str_mv 436430300008
url https://hdl.handle.net/20.500.12390/981
https://doi.org/10.1016/j.ins.2019.02.060
identifier_str_mv 436430300008
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Information Sciences
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883126861430784
spelling Publicationrp00843500rp00841500rp00844500rp00842500Scabini, LFSCondori, RHMGoncalves, WNBruno, OM2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/981https://doi.org/10.1016/j.ins.2019.02.060436430300008L. F. S. Scabini acknowledges support from CNPq (Grants #134558/2016-2 and #142438/2018-9). O. M. Bruno acknowledges support from CNPq (Grant #307797/2014-7 and Grant #484312/2013-8) and FAPESP (grant #14/08026-1 and #16/18809-9). R. H. M. Condori acknowledges support from Cienciactiva, an initiative of the National Council of Science, Technology and Technological Innovation-CONCYTEC (Peru). W. N. Gonçalves acknowledges support from CNPq (Grant #304173/2016-9) and Fundect (Grant #071/2015). The authors are grateful to Abdelmounaime Safia for the feedback concerning the MBT dataset construction, and the NVIDIA GPU Grant Program for the donation of the Quadro P6000 and the Titan Xp GPUs used on this research.A new method based on complex networks is proposed for color–texture analysis. The proposal consists of modeling the image as a multilayer complex network where each color channel is a layer, and each pixel (in each color channel) is represented as a network vertex. The network dynamic evolution is accessed using a set of modeling parameters (radii and thresholds), and new characterization techniques are introduced to capt information regarding within and between color channel spatial interaction. An automatic and adaptive approach for threshold selection is also proposed. We conduct classification experiments on 5 well-known datasets: Vistex, Usptex, Outex13, CURet, and MBT. Results among various literature methods are compared, including deep convolutional neural networks. The proposed method presented the highest overall performance over the 5 datasets, with 97.7 of mean accuracy against 97.0 achieved by the ResNet convolutional neural network with 50 layers.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier LtdInformation Sciencesinfo:eu-repo/semantics/openAccessnetwork dynamiccomplex networks-1multilayer complex network-1https://purl.org/pe-repo/ocde/ford#1.02.02-1Multilayer complex network descriptors for color-texture characterizationinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/981oai:repositorio.concytec.gob.pe:20.500.12390/9812024-05-30 15:23:26.082http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="7867ddb8-0025-4792-a12d-366a8db6d561"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Multilayer complex network descriptors for color-texture characterization</Title> <PublishedIn> <Publication> <Title>Information Sciences</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1016/j.ins.2019.02.060</DOI> <ISI-Number>436430300008</ISI-Number> <Authors> <Author> <DisplayName>Scabini, LFS</DisplayName> <Person id="rp00843" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Condori, RHM</DisplayName> <Person id="rp00841" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Goncalves, WN</DisplayName> <Person id="rp00844" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bruno, OM</DisplayName> <Person id="rp00842" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>network dynamic</Keyword> <Keyword>complex networks</Keyword> <Keyword>multilayer complex network</Keyword> <Abstract>A new method based on complex networks is proposed for color–texture analysis. The proposal consists of modeling the image as a multilayer complex network where each color channel is a layer, and each pixel (in each color channel) is represented as a network vertex. The network dynamic evolution is accessed using a set of modeling parameters (radii and thresholds), and new characterization techniques are introduced to capt information regarding within and between color channel spatial interaction. An automatic and adaptive approach for threshold selection is also proposed. We conduct classification experiments on 5 well-known datasets: Vistex, Usptex, Outex13, CURet, and MBT. Results among various literature methods are compared, including deep convolutional neural networks. The proposed method presented the highest overall performance over the 5 datasets, with 97.7 of mean accuracy against 97.0 achieved by the ResNet convolutional neural network with 50 layers.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.243185
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).