Testing Machine Learning at Classical Electrodynamics
Descripción del Articulo
Like physics or another laws-based basic science, machine learning might also be a firm methodology to solve physics problems by the which a kind of optimization and minimization of energy are needed. Expressed at the Mitchell's principles, machine learning can be seen as a strategy that allows...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad Autónoma del Perú |
| Repositorio: | AUTONOMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1647 |
| Enlace del recurso: | https://hdl.handle.net/20.500.13067/1647 https://doi.org/10.23919/SpliTech52315.2021.9566432 |
| Nivel de acceso: | acceso restringido |
| Materia: | Electrodynamics Atmospheric measurements Volume measurement Machine learning Tools Particle measurements Minimization https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
AUTO_2f12fb370358aabee76d278b570f7e63 |
|---|---|
| oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/1647 |
| network_acronym_str |
AUTO |
| network_name_str |
AUTONOMA-Institucional |
| repository_id_str |
4774 |
| spelling |
Nieto-Chaupis, Huber2022-02-22T14:03:04Z2022-02-22T14:03:04Z2021-10-22Nieto-Chaupis, H. (2021, September). Testing Machine Learning at Classical Electrodynamics. In 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech) (pp. 1-5). IEEE.978-953-290-112-2https://hdl.handle.net/20.500.13067/16472021 6th International Conference on Smart and Sustainable Technologies, SpliTech 2021https://doi.org/10.23919/SpliTech52315.2021.9566432Like physics or another laws-based basic science, machine learning might also be a firm methodology to solve physics problems by the which a kind of optimization and minimization of energy are needed. Expressed at the Mitchell's principles, machine learning can be seen as a strategy that allows to improve physical actions such as observation and measurement. In the classical territory, one can project the well-known electrodynamics over the steps: (i) task, (ii) performance, and (iii) experience. With this one might to guarantee a kind of learning to face a next similar situation and so on. This paper try to solve the problem of a charged particle inside a cylindrical volume but emphasizing its energy and its measurement. Simulations have shown that machine learning can also be an alternative tool to solve physics problems that require of minimization of energy.application/pdfengInstitute of Electrical and Electronics EngineersPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA15reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAElectrodynamicsAtmospheric measurementsVolume measurementMachine learningToolsParticle measurementsMinimizationhttps://purl.org/pe-repo/ocde/ford#2.02.04Testing Machine Learning at Classical Electrodynamicsinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85118449716&doi=10.23919%2fSpliTech52315.2021.9566432&partnerID=LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1647/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINALTesting Machine Learning at Classical Electrodynamics.pdfTesting Machine Learning at Classical Electrodynamics.pdfVer fuenteapplication/pdf98300http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1647/3/Testing%20Machine%20Learning%20at%20Classical%20Electrodynamics.pdfb65999a8be581ed45f495b69a0a52662MD53TEXTTesting Machine Learning at Classical Electrodynamics.pdf.txtTesting Machine Learning at Classical Electrodynamics.pdf.txtExtracted texttext/plain548http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1647/4/Testing%20Machine%20Learning%20at%20Classical%20Electrodynamics.pdf.txt5bf96f40d79045fb72987d8218be2612MD54THUMBNAILTesting Machine Learning at Classical Electrodynamics.pdf.jpgTesting Machine Learning at Classical Electrodynamics.pdf.jpgGenerated Thumbnailimage/jpeg5731http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1647/5/Testing%20Machine%20Learning%20at%20Classical%20Electrodynamics.pdf.jpg0c18e0e0fa2057b9bd20e7384c9065bbMD5520.500.13067/1647oai:repositorio.autonoma.edu.pe:20.500.13067/16472022-02-23 03:00:19.52Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe |
| dc.title.es_PE.fl_str_mv |
Testing Machine Learning at Classical Electrodynamics |
| title |
Testing Machine Learning at Classical Electrodynamics |
| spellingShingle |
Testing Machine Learning at Classical Electrodynamics Nieto-Chaupis, Huber Electrodynamics Atmospheric measurements Volume measurement Machine learning Tools Particle measurements Minimization https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Testing Machine Learning at Classical Electrodynamics |
| title_full |
Testing Machine Learning at Classical Electrodynamics |
| title_fullStr |
Testing Machine Learning at Classical Electrodynamics |
| title_full_unstemmed |
Testing Machine Learning at Classical Electrodynamics |
| title_sort |
Testing Machine Learning at Classical Electrodynamics |
| author |
Nieto-Chaupis, Huber |
| author_facet |
Nieto-Chaupis, Huber |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Nieto-Chaupis, Huber |
| dc.subject.es_PE.fl_str_mv |
Electrodynamics Atmospheric measurements Volume measurement Machine learning Tools Particle measurements Minimization |
| topic |
Electrodynamics Atmospheric measurements Volume measurement Machine learning Tools Particle measurements Minimization https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Like physics or another laws-based basic science, machine learning might also be a firm methodology to solve physics problems by the which a kind of optimization and minimization of energy are needed. Expressed at the Mitchell's principles, machine learning can be seen as a strategy that allows to improve physical actions such as observation and measurement. In the classical territory, one can project the well-known electrodynamics over the steps: (i) task, (ii) performance, and (iii) experience. With this one might to guarantee a kind of learning to face a next similar situation and so on. This paper try to solve the problem of a charged particle inside a cylindrical volume but emphasizing its energy and its measurement. Simulations have shown that machine learning can also be an alternative tool to solve physics problems that require of minimization of energy. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2022-02-22T14:03:04Z |
| dc.date.available.none.fl_str_mv |
2022-02-22T14:03:04Z |
| dc.date.issued.fl_str_mv |
2021-10-22 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Nieto-Chaupis, H. (2021, September). Testing Machine Learning at Classical Electrodynamics. In 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech) (pp. 1-5). IEEE. |
| dc.identifier.isbn.none.fl_str_mv |
978-953-290-112-2 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/1647 |
| dc.identifier.journal.es_PE.fl_str_mv |
2021 6th International Conference on Smart and Sustainable Technologies, SpliTech 2021 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.23919/SpliTech52315.2021.9566432 |
| identifier_str_mv |
Nieto-Chaupis, H. (2021, September). Testing Machine Learning at Classical Electrodynamics. In 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech) (pp. 1-5). IEEE. 978-953-290-112-2 2021 6th International Conference on Smart and Sustainable Technologies, SpliTech 2021 |
| url |
https://hdl.handle.net/20.500.13067/1647 https://doi.org/10.23919/SpliTech52315.2021.9566432 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.url.es_PE.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118449716&doi=10.23919%2fSpliTech52315.2021.9566432&partnerID= |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
restrictedAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
AUTONOMA |
| dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
| instname_str |
Universidad Autónoma del Perú |
| instacron_str |
AUTONOMA |
| institution |
AUTONOMA |
| reponame_str |
AUTONOMA-Institucional |
| collection |
AUTONOMA-Institucional |
| dc.source.beginpage.es_PE.fl_str_mv |
1 |
| dc.source.endpage.es_PE.fl_str_mv |
5 |
| bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1647/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1647/3/Testing%20Machine%20Learning%20at%20Classical%20Electrodynamics.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1647/4/Testing%20Machine%20Learning%20at%20Classical%20Electrodynamics.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1647/5/Testing%20Machine%20Learning%20at%20Classical%20Electrodynamics.pdf.jpg |
| bitstream.checksum.fl_str_mv |
9243398ff393db1861c890baeaeee5f9 b65999a8be581ed45f495b69a0a52662 5bf96f40d79045fb72987d8218be2612 0c18e0e0fa2057b9bd20e7384c9065bb |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
| repository.mail.fl_str_mv |
repositorio@autonoma.pe |
| _version_ |
1774399985099472896 |
| score |
13.936249 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).