Testing Machine Learning at Classical Electrodynamics

Descripción del Articulo

Like physics or another laws-based basic science, machine learning might also be a firm methodology to solve physics problems by the which a kind of optimization and minimization of energy are needed. Expressed at the Mitchell's principles, machine learning can be seen as a strategy that allows...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1647
Enlace del recurso:https://hdl.handle.net/20.500.13067/1647
https://doi.org/10.23919/SpliTech52315.2021.9566432
Nivel de acceso:acceso restringido
Materia:Electrodynamics
Atmospheric measurements
Volume measurement
Machine learning
Tools
Particle measurements
Minimization
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Like physics or another laws-based basic science, machine learning might also be a firm methodology to solve physics problems by the which a kind of optimization and minimization of energy are needed. Expressed at the Mitchell's principles, machine learning can be seen as a strategy that allows to improve physical actions such as observation and measurement. In the classical territory, one can project the well-known electrodynamics over the steps: (i) task, (ii) performance, and (iii) experience. With this one might to guarantee a kind of learning to face a next similar situation and so on. This paper try to solve the problem of a charged particle inside a cylindrical volume but emphasizing its energy and its measurement. Simulations have shown that machine learning can also be an alternative tool to solve physics problems that require of minimization of energy.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).