Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria

Descripción del Articulo

Commonly the searching and identification of new particles, requires to reach highest efficiencies and purities as well. It demands to apply a chain of cuts that reject the background substantially. In most cases the processes to extract signal from the background is carried out by hand with some as...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1714
Enlace del recurso:https://hdl.handle.net/20.500.13067/1714
https://doi.org/10.1007/978-3-030-46785-2_29
Nivel de acceso:acceso restringido
Materia:Data analysis
Particle Physics Experiments
Machine learning
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Commonly the searching and identification of new particles, requires to reach highest efficiencies and purities as well. It demands to apply a chain of cuts that reject the background substantially. In most cases the processes to extract signal from the background is carried out by hand with some assistance of well designed and intelligent codes that save time and resources in high energy physics experiments. In this paper we present one application of the Mitchell’s criteria to extract efficiently beyond Standard Model signal events yielding an error of order of 1.22%. The usage of Machine Learning schemes appears to be advantageous when large volumes of data need to be scrutinized.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).