The Gamma Function: basic properties and some applications

Descripción del Articulo

The goal of the present work is to study some properties and applications of the Gamma Function, denoted by Γ. Initially, we use the Lebesgue Integral Theory in order to prove that the improper integral given by Γ is convergent. We describe the extended domain property of Γ, and we also deduce some...

Descripción completa

Detalles Bibliográficos
Autores: Gavilán Gonzales, Maruja, Gonzales Bohorquez, Martha
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad Nacional de Trujillo
Repositorio:Revista UNITRU - Selecciones Matemáticas
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/1623
Enlace del recurso:http://revistas.unitru.edu.pe/index.php/SSMM/article/view/1623
Nivel de acceso:acceso abierto
Materia:Lebesgue Integral
Gamma Function
Beta Function
Convolution
Continuous Distribution
Integral de Lebesgue
función Gamma
función Beta
convolución
distribución continua
Descripción
Sumario:The goal of the present work is to study some properties and applications of the Gamma Function, denoted by Γ. Initially, we use the Lebesgue Integral Theory in order to prove that the improper integral given by Γ is convergent. We describe the extended domain property of Γ, and we also deduce some elementary properties. We present two different ways of proving that B(x, y) = Γ(x)Γ(y)/Γ(x+y) , where B is the Beta Function. Finally, we include some applications of the Gamma Function, between them some serve up as tools on Reliability Engineering.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).