Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
Descripción del Articulo
Currently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitat...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Privada Norbert Wiener |
Repositorio: | UWIENER-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.uwiener.edu.pe:20.500.13053/9653 |
Enlace del recurso: | https://hdl.handle.net/20.500.13053/9653 |
Nivel de acceso: | acceso abierto |
Materia: | Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus 1.02.00 -- Informática y Ciencias de la Información |
id |
UWIE_a369c446e18f80084ddcb0dbb7c89e88 |
---|---|
oai_identifier_str |
oai:repositorio.uwiener.edu.pe:20.500.13053/9653 |
network_acronym_str |
UWIE |
network_name_str |
UWIENER-Institucional |
repository_id_str |
9398 |
dc.title.es_PE.fl_str_mv |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
title |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
spellingShingle |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 Garcia-Rios, Victor Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus 1.02.00 -- Informática y Ciencias de la Información |
title_short |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
title_full |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
title_fullStr |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
title_full_unstemmed |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
title_sort |
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2 |
author |
Garcia-Rios, Victor |
author_facet |
Garcia-Rios, Victor Marres-Salhuana, Marieta Sierra-Liñan, Fernando Cabanillas-Carbonell, Michael |
author_role |
author |
author2 |
Marres-Salhuana, Marieta Sierra-Liñan, Fernando Cabanillas-Carbonell, Michael |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Garcia-Rios, Victor Marres-Salhuana, Marieta Sierra-Liñan, Fernando Cabanillas-Carbonell, Michael |
dc.subject.es_PE.fl_str_mv |
Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus |
topic |
Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus 1.02.00 -- Informática y Ciencias de la Información |
dc.subject.ocde.es_PE.fl_str_mv |
1.02.00 -- Informática y Ciencias de la Información |
description |
Currently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitates the diagnosis of the dis-ease quickly and easily. Different machine learning models were designed and compared, being random forest was the algorithm that generated the model with the best performance (90.43% accuracy), which was integrated into a web platform, working with the PIMA dataset, which was validated by specialists from the Peruvian League for the Fight against Diabetes organization. The result was a decrease of (A) 88.28% in the information collection time, (B) 99.99% in the diagnosis time, (C) 44.42% in the diagnosis cost, and (D) 100% in the level of difficulty, concluding that the application of machine learning can significantly optimize the diagnostic process of type 2 diabetes mellitus. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-10-20T17:14:36Z |
dc.date.available.none.fl_str_mv |
2023-10-20T17:14:36Z |
dc.date.issued.fl_str_mv |
2023-01-30 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13053/9653 |
dc.identifier.doi.none.fl_str_mv |
10.11591/ijai.v12.i4.pp1713-1726 |
url |
https://hdl.handle.net/20.500.13053/9653 |
identifier_str_mv |
10.11591/ijai.v12.i4.pp1713-1726 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Institute of Advanced Engineering and Science |
dc.publisher.country.es_PE.fl_str_mv |
IDN |
dc.source.none.fl_str_mv |
reponame:UWIENER-Institucional instname:Universidad Privada Norbert Wiener instacron:UWIENER |
instname_str |
Universidad Privada Norbert Wiener |
instacron_str |
UWIENER |
institution |
UWIENER |
reponame_str |
UWIENER-Institucional |
collection |
UWIENER-Institucional |
bitstream.url.fl_str_mv |
https://dspace-uwiener.metabuscador.org/bitstreams/af658f25-e9be-4be7-8bab-aacc16d10b7b/download https://dspace-uwiener.metabuscador.org/bitstreams/d12735df-a4f1-424f-8ffd-013f902f713a/download https://dspace-uwiener.metabuscador.org/bitstreams/6cd0b497-d6e5-4343-81da-55032e268937/download https://dspace-uwiener.metabuscador.org/bitstreams/910c4c11-0cec-4457-b7f6-50936446cfe1/download |
bitstream.checksum.fl_str_mv |
27e88fdfd834d63dedd3ffb44065ec37 8a4605be74aa9ea9d79846c1fba20a33 43f2cdfe0951b07ea487253f9faed538 c2c8c9b039b20b8514e8f15f856eba1c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Wiener |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1835828692345946112 |
spelling |
Garcia-Rios, VictorMarres-Salhuana, MarietaSierra-Liñan, FernandoCabanillas-Carbonell, Michael2023-10-20T17:14:36Z2023-10-20T17:14:36Z2023-01-30https://hdl.handle.net/20.500.13053/965310.11591/ijai.v12.i4.pp1713-1726Currently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitates the diagnosis of the dis-ease quickly and easily. Different machine learning models were designed and compared, being random forest was the algorithm that generated the model with the best performance (90.43% accuracy), which was integrated into a web platform, working with the PIMA dataset, which was validated by specialists from the Peruvian League for the Fight against Diabetes organization. The result was a decrease of (A) 88.28% in the information collection time, (B) 99.99% in the diagnosis time, (C) 44.42% in the diagnosis cost, and (D) 100% in the level of difficulty, concluding that the application of machine learning can significantly optimize the diagnostic process of type 2 diabetes mellitus.application/pdfengInstitute of Advanced Engineering and ScienceIDNinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus1.02.00 -- Informática y Ciencias de la InformaciónPredictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationORIGINAL22226-45802-1-PB (1).pdf22226-45802-1-PB (1).pdfapplication/pdf1263277https://dspace-uwiener.metabuscador.org/bitstreams/af658f25-e9be-4be7-8bab-aacc16d10b7b/download27e88fdfd834d63dedd3ffb44065ec37MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/d12735df-a4f1-424f-8ffd-013f902f713a/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXT22226-45802-1-PB (1).pdf.txt22226-45802-1-PB (1).pdf.txtExtracted texttext/plain48284https://dspace-uwiener.metabuscador.org/bitstreams/6cd0b497-d6e5-4343-81da-55032e268937/download43f2cdfe0951b07ea487253f9faed538MD53THUMBNAIL22226-45802-1-PB (1).pdf.jpg22226-45802-1-PB (1).pdf.jpgGenerated Thumbnailimage/jpeg4598https://dspace-uwiener.metabuscador.org/bitstreams/910c4c11-0cec-4457-b7f6-50936446cfe1/downloadc2c8c9b039b20b8514e8f15f856eba1cMD5420.500.13053/9653oai:dspace-uwiener.metabuscador.org:20.500.13053/96532024-12-13 14:29:30.714https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.949927 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).