Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2

Descripción del Articulo

Currently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitat...

Descripción completa

Detalles Bibliográficos
Autores: Garcia-Rios, Victor, Marres-Salhuana, Marieta, Sierra-Liñan, Fernando, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Privada Norbert Wiener
Repositorio:UWIENER-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uwiener.edu.pe:20.500.13053/9653
Enlace del recurso:https://hdl.handle.net/20.500.13053/9653
Nivel de acceso:acceso abierto
Materia:Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus
1.02.00 -- Informática y Ciencias de la Información
id UWIE_a369c446e18f80084ddcb0dbb7c89e88
oai_identifier_str oai:repositorio.uwiener.edu.pe:20.500.13053/9653
network_acronym_str UWIE
network_name_str UWIENER-Institucional
repository_id_str 9398
dc.title.es_PE.fl_str_mv Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
title Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
spellingShingle Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
Garcia-Rios, Victor
Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus
1.02.00 -- Informática y Ciencias de la Información
title_short Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
title_full Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
title_fullStr Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
title_full_unstemmed Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
title_sort Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2
author Garcia-Rios, Victor
author_facet Garcia-Rios, Victor
Marres-Salhuana, Marieta
Sierra-Liñan, Fernando
Cabanillas-Carbonell, Michael
author_role author
author2 Marres-Salhuana, Marieta
Sierra-Liñan, Fernando
Cabanillas-Carbonell, Michael
author2_role author
author
author
dc.contributor.author.fl_str_mv Garcia-Rios, Victor
Marres-Salhuana, Marieta
Sierra-Liñan, Fernando
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus
topic Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus
1.02.00 -- Informática y Ciencias de la Información
dc.subject.ocde.es_PE.fl_str_mv 1.02.00 -- Informática y Ciencias de la Información
description Currently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitates the diagnosis of the dis-ease quickly and easily. Different machine learning models were designed and compared, being random forest was the algorithm that generated the model with the best performance (90.43% accuracy), which was integrated into a web platform, working with the PIMA dataset, which was validated by specialists from the Peruvian League for the Fight against Diabetes organization. The result was a decrease of (A) 88.28% in the information collection time, (B) 99.99% in the diagnosis time, (C) 44.42% in the diagnosis cost, and (D) 100% in the level of difficulty, concluding that the application of machine learning can significantly optimize the diagnostic process of type 2 diabetes mellitus.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-20T17:14:36Z
dc.date.available.none.fl_str_mv 2023-10-20T17:14:36Z
dc.date.issued.fl_str_mv 2023-01-30
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13053/9653
dc.identifier.doi.none.fl_str_mv 10.11591/ijai.v12.i4.pp1713-1726
url https://hdl.handle.net/20.500.13053/9653
identifier_str_mv 10.11591/ijai.v12.i4.pp1713-1726
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science
dc.publisher.country.es_PE.fl_str_mv IDN
dc.source.none.fl_str_mv reponame:UWIENER-Institucional
instname:Universidad Privada Norbert Wiener
instacron:UWIENER
instname_str Universidad Privada Norbert Wiener
instacron_str UWIENER
institution UWIENER
reponame_str UWIENER-Institucional
collection UWIENER-Institucional
bitstream.url.fl_str_mv https://dspace-uwiener.metabuscador.org/bitstreams/af658f25-e9be-4be7-8bab-aacc16d10b7b/download
https://dspace-uwiener.metabuscador.org/bitstreams/d12735df-a4f1-424f-8ffd-013f902f713a/download
https://dspace-uwiener.metabuscador.org/bitstreams/6cd0b497-d6e5-4343-81da-55032e268937/download
https://dspace-uwiener.metabuscador.org/bitstreams/910c4c11-0cec-4457-b7f6-50936446cfe1/download
bitstream.checksum.fl_str_mv 27e88fdfd834d63dedd3ffb44065ec37
8a4605be74aa9ea9d79846c1fba20a33
43f2cdfe0951b07ea487253f9faed538
c2c8c9b039b20b8514e8f15f856eba1c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Wiener
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1835828692345946112
spelling Garcia-Rios, VictorMarres-Salhuana, MarietaSierra-Liñan, FernandoCabanillas-Carbonell, Michael2023-10-20T17:14:36Z2023-10-20T17:14:36Z2023-01-30https://hdl.handle.net/20.500.13053/965310.11591/ijai.v12.i4.pp1713-1726Currently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitates the diagnosis of the dis-ease quickly and easily. Different machine learning models were designed and compared, being random forest was the algorithm that generated the model with the best performance (90.43% accuracy), which was integrated into a web platform, working with the PIMA dataset, which was validated by specialists from the Peruvian League for the Fight against Diabetes organization. The result was a decrease of (A) 88.28% in the information collection time, (B) 99.99% in the diagnosis time, (C) 44.42% in the diagnosis cost, and (D) 100% in the level of difficulty, concluding that the application of machine learning can significantly optimize the diagnostic process of type 2 diabetes mellitus.application/pdfengInstitute of Advanced Engineering and ScienceIDNinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Diagnosis Machine learning Prediction Random forest Type 2 diabetes mellitus1.02.00 -- Informática y Ciencias de la InformaciónPredictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationORIGINAL22226-45802-1-PB (1).pdf22226-45802-1-PB (1).pdfapplication/pdf1263277https://dspace-uwiener.metabuscador.org/bitstreams/af658f25-e9be-4be7-8bab-aacc16d10b7b/download27e88fdfd834d63dedd3ffb44065ec37MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/d12735df-a4f1-424f-8ffd-013f902f713a/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXT22226-45802-1-PB (1).pdf.txt22226-45802-1-PB (1).pdf.txtExtracted texttext/plain48284https://dspace-uwiener.metabuscador.org/bitstreams/6cd0b497-d6e5-4343-81da-55032e268937/download43f2cdfe0951b07ea487253f9faed538MD53THUMBNAIL22226-45802-1-PB (1).pdf.jpg22226-45802-1-PB (1).pdf.jpgGenerated Thumbnailimage/jpeg4598https://dspace-uwiener.metabuscador.org/bitstreams/910c4c11-0cec-4457-b7f6-50936446cfe1/downloadc2c8c9b039b20b8514e8f15f856eba1cMD5420.500.13053/9653oai:dspace-uwiener.metabuscador.org:20.500.13053/96532024-12-13 14:29:30.714https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.949927
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).