“Breast Cancer Prediction using Machine Learning Models“

Descripción del Articulo

Breast cancer is a type of cancer that develops in the cells of the breast. Treatment for breast cancer usually involves X-ray, chemotherapy, or a combination of both treatments. Detecting cancer at an early stage can save a person's life. Artificial intelligence (AI) plays a very important rol...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Epifanía-Huerta, Andrés, Torres-Ceclén, Carmen, Ruiz-Alvarado, John, Cabanillas-Carbonel, Michael
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Privada Norbert Wiener
Repositorio:UWIENER-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uwiener.edu.pe:20.500.13053/9106
Enlace del recurso:https://hdl.handle.net/20.500.13053/9106
Nivel de acceso:acceso abierto
Materia:Prediction; models; machine learning, cells; breast cancer
1.02.00 -- Informática y Ciencias de la Información
id UWIE_6de3c96cdcaafe83d66263bc6995732c
oai_identifier_str oai:repositorio.uwiener.edu.pe:20.500.13053/9106
network_acronym_str UWIE
network_name_str UWIENER-Institucional
repository_id_str 9398
dc.title.es_PE.fl_str_mv “Breast Cancer Prediction using Machine Learning Models“
title “Breast Cancer Prediction using Machine Learning Models“
spellingShingle “Breast Cancer Prediction using Machine Learning Models“
Iparraguirre-Villanueva, Orlando
Prediction; models; machine learning, cells; breast cancer
1.02.00 -- Informática y Ciencias de la Información
title_short “Breast Cancer Prediction using Machine Learning Models“
title_full “Breast Cancer Prediction using Machine Learning Models“
title_fullStr “Breast Cancer Prediction using Machine Learning Models“
title_full_unstemmed “Breast Cancer Prediction using Machine Learning Models“
title_sort “Breast Cancer Prediction using Machine Learning Models“
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Epifanía-Huerta, Andrés
Torres-Ceclén, Carmen
Ruiz-Alvarado, John
Cabanillas-Carbonel, Michael
author_role author
author2 Epifanía-Huerta, Andrés
Torres-Ceclén, Carmen
Ruiz-Alvarado, John
Cabanillas-Carbonel, Michael
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Epifanía-Huerta, Andrés
Torres-Ceclén, Carmen
Ruiz-Alvarado, John
Cabanillas-Carbonel, Michael
dc.subject.es_PE.fl_str_mv Prediction; models; machine learning, cells; breast cancer
topic Prediction; models; machine learning, cells; breast cancer
1.02.00 -- Informática y Ciencias de la Información
dc.subject.ocde.es_PE.fl_str_mv 1.02.00 -- Informática y Ciencias de la Información
description Breast cancer is a type of cancer that develops in the cells of the breast. Treatment for breast cancer usually involves X-ray, chemotherapy, or a combination of both treatments. Detecting cancer at an early stage can save a person's life. Artificial intelligence (AI) plays a very important role in this area. Therefore, predicting breast cancer remains a very challenging issue for clinicians and researchers. This work aims to predict the probability of breast cancer in patients. Using machine learning (ML) models such as Multilayer Perceptron (MLP), K-Nearest Neightbot (KNN), AdaBoost (AB), Bagging, Gradient Boosting (GB), and Random Forest (RF). The breast cancer diagnostic medical dataset from the Wisconsin repository has been used. The dataset includes 569 observations and 32 features. Following the data analysis methodology, data cleaning, exploratory analysis, training, testing, and validation were performed. The performance of the models was evaluated with the parameters: classification accuracy, specificity, sensitivity, F1 count, and precision. The training and results indicate that the six trained models can provide optimal classification and prediction results. The RF, GB, and AB models achieved 100% accuracy, outperforming the other models. Therefore, the suggested models for breast cancer identification, classification, and prediction are RF, GB, and AB. Likewise, the Bagging, KNN, and MLP models achieved a performance of 99.56%, 95.82%, and 96.92%, respectively. Similarly, the last three models achieved an optimal yield close to 100%. Finally, the results show a clear advantage of the RF, GB, and AB models, as they achieve more accurate results in breast cancer prediction.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-01T20:43:58Z
dc.date.available.none.fl_str_mv 2023-08-01T20:43:58Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13053/9106
dc.identifier.doi.none.fl_str_mv 10.14569/IJACSA.2023.0140272
url https://hdl.handle.net/20.500.13053/9106
identifier_str_mv 10.14569/IJACSA.2023.0140272
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Science and Information Organization
dc.publisher.country.es_PE.fl_str_mv UK
dc.source.none.fl_str_mv reponame:UWIENER-Institucional
instname:Universidad Privada Norbert Wiener
instacron:UWIENER
instname_str Universidad Privada Norbert Wiener
instacron_str UWIENER
institution UWIENER
reponame_str UWIENER-Institucional
collection UWIENER-Institucional
bitstream.url.fl_str_mv https://dspace-uwiener.metabuscador.org/bitstreams/7b67127e-7148-4930-9a85-0fc38a9b51c7/download
https://dspace-uwiener.metabuscador.org/bitstreams/0f757f66-5c15-460d-bdee-588ff98117d3/download
https://dspace-uwiener.metabuscador.org/bitstreams/a8838b2f-0166-4bf4-a21f-8849118a9595/download
https://dspace-uwiener.metabuscador.org/bitstreams/9f8410dc-a041-4b99-86f2-cc873815d80b/download
bitstream.checksum.fl_str_mv 9206319d1b143bcdee8e50ba3c538951
8a4605be74aa9ea9d79846c1fba20a33
99639d93a88e6df238344fb6f8d585b3
4db34e62be3301e843dcbb0aee79bd93
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Wiener
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1835828805013340160
spelling Iparraguirre-Villanueva, OrlandoEpifanía-Huerta, AndrésTorres-Ceclén, CarmenRuiz-Alvarado, JohnCabanillas-Carbonel, Michael2023-08-01T20:43:58Z2023-08-01T20:43:58Z2023https://hdl.handle.net/20.500.13053/910610.14569/IJACSA.2023.0140272Breast cancer is a type of cancer that develops in the cells of the breast. Treatment for breast cancer usually involves X-ray, chemotherapy, or a combination of both treatments. Detecting cancer at an early stage can save a person's life. Artificial intelligence (AI) plays a very important role in this area. Therefore, predicting breast cancer remains a very challenging issue for clinicians and researchers. This work aims to predict the probability of breast cancer in patients. Using machine learning (ML) models such as Multilayer Perceptron (MLP), K-Nearest Neightbot (KNN), AdaBoost (AB), Bagging, Gradient Boosting (GB), and Random Forest (RF). The breast cancer diagnostic medical dataset from the Wisconsin repository has been used. The dataset includes 569 observations and 32 features. Following the data analysis methodology, data cleaning, exploratory analysis, training, testing, and validation were performed. The performance of the models was evaluated with the parameters: classification accuracy, specificity, sensitivity, F1 count, and precision. The training and results indicate that the six trained models can provide optimal classification and prediction results. The RF, GB, and AB models achieved 100% accuracy, outperforming the other models. Therefore, the suggested models for breast cancer identification, classification, and prediction are RF, GB, and AB. Likewise, the Bagging, KNN, and MLP models achieved a performance of 99.56%, 95.82%, and 96.92%, respectively. Similarly, the last three models achieved an optimal yield close to 100%. Finally, the results show a clear advantage of the RF, GB, and AB models, as they achieve more accurate results in breast cancer prediction.application/pdfengScience and Information OrganizationUKinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Prediction; models; machine learning, cells; breast cancer1.02.00 -- Informática y Ciencias de la Información“Breast Cancer Prediction using Machine Learning Models“info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationORIGINALPaper_72-Breast_Cancer_Prediction_using_Machine_Learning_Models.pdfPaper_72-Breast_Cancer_Prediction_using_Machine_Learning_Models.pdfapplication/pdf1311622https://dspace-uwiener.metabuscador.org/bitstreams/7b67127e-7148-4930-9a85-0fc38a9b51c7/download9206319d1b143bcdee8e50ba3c538951MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/0f757f66-5c15-460d-bdee-588ff98117d3/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPaper_72-Breast_Cancer_Prediction_using_Machine_Learning_Models.pdf.txtPaper_72-Breast_Cancer_Prediction_using_Machine_Learning_Models.pdf.txtExtracted texttext/plain49863https://dspace-uwiener.metabuscador.org/bitstreams/a8838b2f-0166-4bf4-a21f-8849118a9595/download99639d93a88e6df238344fb6f8d585b3MD53THUMBNAILPaper_72-Breast_Cancer_Prediction_using_Machine_Learning_Models.pdf.jpgPaper_72-Breast_Cancer_Prediction_using_Machine_Learning_Models.pdf.jpgGenerated Thumbnailimage/jpeg12753https://dspace-uwiener.metabuscador.org/bitstreams/9f8410dc-a041-4b99-86f2-cc873815d80b/download4db34e62be3301e843dcbb0aee79bd93MD5420.500.13053/9106oai:dspace-uwiener.metabuscador.org:20.500.13053/91062024-12-13 11:53:30.025https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.754616
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).