“Breast Cancer Prediction using Machine Learning Models“
Descripción del Articulo
Breast cancer is a type of cancer that develops in the cells of the breast. Treatment for breast cancer usually involves X-ray, chemotherapy, or a combination of both treatments. Detecting cancer at an early stage can save a person's life. Artificial intelligence (AI) plays a very important rol...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Privada Norbert Wiener |
Repositorio: | UWIENER-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.uwiener.edu.pe:20.500.13053/9106 |
Enlace del recurso: | https://hdl.handle.net/20.500.13053/9106 |
Nivel de acceso: | acceso abierto |
Materia: | Prediction; models; machine learning, cells; breast cancer 1.02.00 -- Informática y Ciencias de la Información |
id |
UWIE_6de3c96cdcaafe83d66263bc6995732c |
---|---|
oai_identifier_str |
oai:repositorio.uwiener.edu.pe:20.500.13053/9106 |
network_acronym_str |
UWIE |
network_name_str |
UWIENER-Institucional |
repository_id_str |
9398 |
dc.title.es_PE.fl_str_mv |
“Breast Cancer Prediction using Machine Learning Models“ |
title |
“Breast Cancer Prediction using Machine Learning Models“ |
spellingShingle |
“Breast Cancer Prediction using Machine Learning Models“ Iparraguirre-Villanueva, Orlando Prediction; models; machine learning, cells; breast cancer 1.02.00 -- Informática y Ciencias de la Información |
title_short |
“Breast Cancer Prediction using Machine Learning Models“ |
title_full |
“Breast Cancer Prediction using Machine Learning Models“ |
title_fullStr |
“Breast Cancer Prediction using Machine Learning Models“ |
title_full_unstemmed |
“Breast Cancer Prediction using Machine Learning Models“ |
title_sort |
“Breast Cancer Prediction using Machine Learning Models“ |
author |
Iparraguirre-Villanueva, Orlando |
author_facet |
Iparraguirre-Villanueva, Orlando Epifanía-Huerta, Andrés Torres-Ceclén, Carmen Ruiz-Alvarado, John Cabanillas-Carbonel, Michael |
author_role |
author |
author2 |
Epifanía-Huerta, Andrés Torres-Ceclén, Carmen Ruiz-Alvarado, John Cabanillas-Carbonel, Michael |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Iparraguirre-Villanueva, Orlando Epifanía-Huerta, Andrés Torres-Ceclén, Carmen Ruiz-Alvarado, John Cabanillas-Carbonel, Michael |
dc.subject.es_PE.fl_str_mv |
Prediction; models; machine learning, cells; breast cancer |
topic |
Prediction; models; machine learning, cells; breast cancer 1.02.00 -- Informática y Ciencias de la Información |
dc.subject.ocde.es_PE.fl_str_mv |
1.02.00 -- Informática y Ciencias de la Información |
description |
Breast cancer is a type of cancer that develops in the cells of the breast. Treatment for breast cancer usually involves X-ray, chemotherapy, or a combination of both treatments. Detecting cancer at an early stage can save a person's life. Artificial intelligence (AI) plays a very important role in this area. Therefore, predicting breast cancer remains a very challenging issue for clinicians and researchers. This work aims to predict the probability of breast cancer in patients. Using machine learning (ML) models such as Multilayer Perceptron (MLP), K-Nearest Neightbot (KNN), AdaBoost (AB), Bagging, Gradient Boosting (GB), and Random Forest (RF). The breast cancer diagnostic medical dataset from the Wisconsin repository has been used. The dataset includes 569 observations and 32 features. Following the data analysis methodology, data cleaning, exploratory analysis, training, testing, and validation were performed. The performance of the models was evaluated with the parameters: classification accuracy, specificity, sensitivity, F1 count, and precision. The training and results indicate that the six trained models can provide optimal classification and prediction results. The RF, GB, and AB models achieved 100% accuracy, outperforming the other models. Therefore, the suggested models for breast cancer identification, classification, and prediction are RF, GB, and AB. Likewise, the Bagging, KNN, and MLP models achieved a performance of 99.56%, 95.82%, and 96.92%, respectively. Similarly, the last three models achieved an optimal yield close to 100%. Finally, the results show a clear advantage of the RF, GB, and AB models, as they achieve more accurate results in breast cancer prediction. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-01T20:43:58Z |
dc.date.available.none.fl_str_mv |
2023-08-01T20:43:58Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13053/9106 |
dc.identifier.doi.none.fl_str_mv |
10.14569/IJACSA.2023.0140272 |
url |
https://hdl.handle.net/20.500.13053/9106 |
identifier_str_mv |
10.14569/IJACSA.2023.0140272 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Science and Information Organization |
dc.publisher.country.es_PE.fl_str_mv |
UK |
dc.source.none.fl_str_mv |
reponame:UWIENER-Institucional instname:Universidad Privada Norbert Wiener instacron:UWIENER |
instname_str |
Universidad Privada Norbert Wiener |
instacron_str |
UWIENER |
institution |
UWIENER |
reponame_str |
UWIENER-Institucional |
collection |
UWIENER-Institucional |
bitstream.url.fl_str_mv |
https://dspace-uwiener.metabuscador.org/bitstreams/7b67127e-7148-4930-9a85-0fc38a9b51c7/download https://dspace-uwiener.metabuscador.org/bitstreams/0f757f66-5c15-460d-bdee-588ff98117d3/download https://dspace-uwiener.metabuscador.org/bitstreams/a8838b2f-0166-4bf4-a21f-8849118a9595/download https://dspace-uwiener.metabuscador.org/bitstreams/9f8410dc-a041-4b99-86f2-cc873815d80b/download |
bitstream.checksum.fl_str_mv |
9206319d1b143bcdee8e50ba3c538951 8a4605be74aa9ea9d79846c1fba20a33 99639d93a88e6df238344fb6f8d585b3 4db34e62be3301e843dcbb0aee79bd93 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Wiener |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1835828805013340160 |
spelling |
Iparraguirre-Villanueva, OrlandoEpifanía-Huerta, AndrésTorres-Ceclén, CarmenRuiz-Alvarado, JohnCabanillas-Carbonel, Michael2023-08-01T20:43:58Z2023-08-01T20:43:58Z2023https://hdl.handle.net/20.500.13053/910610.14569/IJACSA.2023.0140272Breast cancer is a type of cancer that develops in the cells of the breast. Treatment for breast cancer usually involves X-ray, chemotherapy, or a combination of both treatments. Detecting cancer at an early stage can save a person's life. Artificial intelligence (AI) plays a very important role in this area. Therefore, predicting breast cancer remains a very challenging issue for clinicians and researchers. This work aims to predict the probability of breast cancer in patients. Using machine learning (ML) models such as Multilayer Perceptron (MLP), K-Nearest Neightbot (KNN), AdaBoost (AB), Bagging, Gradient Boosting (GB), and Random Forest (RF). The breast cancer diagnostic medical dataset from the Wisconsin repository has been used. The dataset includes 569 observations and 32 features. Following the data analysis methodology, data cleaning, exploratory analysis, training, testing, and validation were performed. The performance of the models was evaluated with the parameters: classification accuracy, specificity, sensitivity, F1 count, and precision. The training and results indicate that the six trained models can provide optimal classification and prediction results. The RF, GB, and AB models achieved 100% accuracy, outperforming the other models. Therefore, the suggested models for breast cancer identification, classification, and prediction are RF, GB, and AB. Likewise, the Bagging, KNN, and MLP models achieved a performance of 99.56%, 95.82%, and 96.92%, respectively. Similarly, the last three models achieved an optimal yield close to 100%. Finally, the results show a clear advantage of the RF, GB, and AB models, as they achieve more accurate results in breast cancer prediction.application/pdfengScience and Information OrganizationUKinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Prediction; models; machine learning, cells; breast cancer1.02.00 -- Informática y Ciencias de la Información“Breast Cancer Prediction using Machine Learning Models“info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationORIGINALPaper_72-Breast_Cancer_Prediction_using_Machine_Learning_Models.pdfPaper_72-Breast_Cancer_Prediction_using_Machine_Learning_Models.pdfapplication/pdf1311622https://dspace-uwiener.metabuscador.org/bitstreams/7b67127e-7148-4930-9a85-0fc38a9b51c7/download9206319d1b143bcdee8e50ba3c538951MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/0f757f66-5c15-460d-bdee-588ff98117d3/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPaper_72-Breast_Cancer_Prediction_using_Machine_Learning_Models.pdf.txtPaper_72-Breast_Cancer_Prediction_using_Machine_Learning_Models.pdf.txtExtracted texttext/plain49863https://dspace-uwiener.metabuscador.org/bitstreams/a8838b2f-0166-4bf4-a21f-8849118a9595/download99639d93a88e6df238344fb6f8d585b3MD53THUMBNAILPaper_72-Breast_Cancer_Prediction_using_Machine_Learning_Models.pdf.jpgPaper_72-Breast_Cancer_Prediction_using_Machine_Learning_Models.pdf.jpgGenerated Thumbnailimage/jpeg12753https://dspace-uwiener.metabuscador.org/bitstreams/9f8410dc-a041-4b99-86f2-cc873815d80b/download4db34e62be3301e843dcbb0aee79bd93MD5420.500.13053/9106oai:dspace-uwiener.metabuscador.org:20.500.13053/91062024-12-13 11:53:30.025https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.754616 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).