Identifying treatment effects and counterfactual distributions using data combination with unobserved heterogeneity

Descripción del Articulo

This paper considers identification of treatment effects when the outcome variables and covari-ates are not observed in the same data sets. Ecological inference models, where aggregate out-come information is combined with individual demographic information, are a common example of these situations....

Descripción completa

Detalles Bibliográficos
Autores: Lavado, Pablo, Rivera, Gonzalo
Formato: documento de trabajo
Fecha de Publicación:2015
Institución:Universidad del Pacífico
Repositorio:UP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.up.edu.pe:11354/1090
Enlace del recurso:http://hdl.handle.net/11354/1090
Nivel de acceso:acceso abierto
Materia:Variables instrumentales
Distribuciones contrafactuales
Descripción
Sumario:This paper considers identification of treatment effects when the outcome variables and covari-ates are not observed in the same data sets. Ecological inference models, where aggregate out-come information is combined with individual demographic information, are a common example of these situations. In this context, the counterfactual distributions and the treatment effects are not point identified. However, recent results provide bounds to partially identify causal effects. Unlike previous works, this paper adopts the selection on unobservables assumption, which means that randomization of treatment assignments is not achieved until time fixed unobserved heterogeneity is controlled for. Panel data models linear in the unobserved components are con-sidered to achieve identification. To assess the performance of these bounds, this paper provides a simulation exercise.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).