Un enfoque MIDAS modificado: FB-MIDAS

Descripción del Articulo

Los modelos de series de tiempo tradicionales asumen una misma frecuencia entre la variable dependiente y las variables explicativas. Sin embargo, en finanzas y en macroeconomía existen variables dependientes trimestrales que pueden ser explicadas o predichas por variables independientes diarias o m...

Descripción completa

Detalles Bibliográficos
Autor: Miní Cuadros, Renzo Enrique
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Universidad del Pacífico
Repositorio:UP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.up.edu.pe:11354/2202
Enlace del recurso:http://hdl.handle.net/11354/2202
Nivel de acceso:acceso abierto
Materia:Macroeconomía--Modelos económetricos
MIDAS
Análisis de series de tiempo
Economía
https://purl.org/pe-repo/ocde/ford#5.02.01
Descripción
Sumario:Los modelos de series de tiempo tradicionales asumen una misma frecuencia entre la variable dependiente y las variables explicativas. Sin embargo, en finanzas y en macroeconomía existen variables dependientes trimestrales que pueden ser explicadas o predichas por variables independientes diarias o mensuales, respectivamente. Para resolver este problema, la literatura ha desarrollado la metodología MIDAS (mixed-data sampling) que emplea un polinomio de rezagos distribuidos para relacionar variables de alta frecuencia con variables de baja frecuencia. Cuando la diferencia entre frecuencias es alta, típicamente se han empleado restricciones a los coeficientes para reducir la varianza de los estimadores y solucionar el problema de sobreparametrización (metodología MIDAS). Cuando la diferencia entre frecuencias es baja, existen relativamente pocos parámetros a estimar, por lo que un modelo sin restricciones (U-MIDAS) funciona mejor para nowcasting y backcasting. Esta investigación pretende darle un tratamiento bayesiano a la decisión de imponer o no restricciones al polinomio del modelo. Es decir, trata de ubicarse en el medio de los dos extremos (MIDAS y U-MIDAS) al imponer restricciones, determinadas empíricamente, de manera estocástica. El tratamiento consiste de un prior de “suavizamiento” sobre la distribución de rezagos del polinomio, y para encontrarlo, realiza tanto una calibración bayesiana empírica como un promedio ponderado de modelos bayesianos.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).