Near-infrared optical response and carrier dynamics for high photoconversion power in tellurene

Descripción del Articulo

Materials for applications in solar cells require a combination of features including an appropriate band gap and long relaxation times for photoexcited hot carriers. On the basis of ab initio many-body perturbation theory, including the spin–orbit interaction, we investigate the photocarrier genera...

Descripción completa

Detalles Bibliográficos
Autores: Villegas, Cesar E. P., Rocha, Alexandre R.
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/30150
Enlace del recurso:https://hdl.handle.net/11537/30150
https://doi.org/10.1021/acs.jpcc.1c10526
Nivel de acceso:acceso cerrado
Materia:Electrones
Energía eléctrica
Electricidad
https://purl.org/pe-repo/ocde/ford#2.02.01
Descripción
Sumario:Materials for applications in solar cells require a combination of features including an appropriate band gap and long relaxation times for photoexcited hot carriers. On the basis of ab initio many-body perturbation theory, including the spin–orbit interaction, we investigate the photocarrier generation and dynamics in α-tellurene. We show that photoexcited electrons are mainly generated in the near-infrared range, starting at 0.89 eV and forming excitons that are strongly bound, compared to its bulk counterpart, with a binding energy of 0.31 eV. We also explore the role of the electron–phonon interaction, finding that the electronic states in the first conduction band minimum couples weakly with phonons, yielding longer hot electron lifetimes (up to 70 fs) and mean free paths up to 37 nm. We also show that the extraction of hot holes may result in a challenging task as these carriers possess sub-3 nm mean free paths. We finally estimate that 1-nm-thick α-Te provides a short-circuit current density of 6.7 mA/cm2 and a maximum power conversion efficiency of 4.4%, which highlights its potential for efficient photovoltaic device development.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).