Dielectric spectral profiles for andean tubers classification: a machine learning techniques application
Descripción del Articulo
El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
Autores: | , , , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2021 |
Institución: | Universidad Privada del Norte |
Repositorio: | UPN-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.upn.edu.pe:11537/31119 |
Enlace del recurso: | https://hdl.handle.net/11537/31119 http://dx.doi.org/10.1109/ICEAA52647.2021.9539623 |
Nivel de acceso: | acceso cerrado |
Materia: | Espectroscopia Productos agrícolas Tubérculos Control de calidad Industria Spectroscopy Quality control Andean tubers https://purl.org/pe-repo/ocde/ford#2.11.04 |
id |
UUPN_1364bc658d07d8d5a651d09affbf3bea |
---|---|
oai_identifier_str |
oai:repositorio.upn.edu.pe:11537/31119 |
network_acronym_str |
UUPN |
network_name_str |
UPN-Institucional |
repository_id_str |
1873 |
dc.title.es_PE.fl_str_mv |
Dielectric spectral profiles for andean tubers classification: a machine learning techniques application |
title |
Dielectric spectral profiles for andean tubers classification: a machine learning techniques application |
spellingShingle |
Dielectric spectral profiles for andean tubers classification: a machine learning techniques application Chuquizuta Trigoso, Tony Espectroscopia Productos agrícolas Tubérculos Control de calidad Industria Spectroscopy Quality control Andean tubers https://purl.org/pe-repo/ocde/ford#2.11.04 |
title_short |
Dielectric spectral profiles for andean tubers classification: a machine learning techniques application |
title_full |
Dielectric spectral profiles for andean tubers classification: a machine learning techniques application |
title_fullStr |
Dielectric spectral profiles for andean tubers classification: a machine learning techniques application |
title_full_unstemmed |
Dielectric spectral profiles for andean tubers classification: a machine learning techniques application |
title_sort |
Dielectric spectral profiles for andean tubers classification: a machine learning techniques application |
author |
Chuquizuta Trigoso, Tony |
author_facet |
Chuquizuta Trigoso, Tony Oblitas Cruz, Jimy Arteaga Miñano, Hubert Yarleque, Manuel Castro Silupu, Wilson |
author_role |
author |
author2 |
Oblitas Cruz, Jimy Arteaga Miñano, Hubert Yarleque, Manuel Castro Silupu, Wilson |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Chuquizuta Trigoso, Tony Oblitas Cruz, Jimy Arteaga Miñano, Hubert Yarleque, Manuel Castro Silupu, Wilson |
dc.subject.es_PE.fl_str_mv |
Espectroscopia Productos agrícolas Tubérculos Control de calidad Industria Spectroscopy Quality control Andean tubers |
topic |
Espectroscopia Productos agrícolas Tubérculos Control de calidad Industria Spectroscopy Quality control Andean tubers https://purl.org/pe-repo/ocde/ford#2.11.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
description |
El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-08-09T20:28:25Z |
dc.date.available.none.fl_str_mv |
2022-08-09T20:28:25Z |
dc.date.issued.fl_str_mv |
2021-09-21 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.citation.es_PE.fl_str_mv |
Chuqizuta, T., ...[et al.]. (2021). Dielectric spectral profiles for andean tubers classification: a machine learning techniques application. 2021 International Conference on Electromagnetics in Advanced Applications, ICEAA. http://dx.doi.org/10.1109/ICEAA52647.2021.9539623 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11537/31119 |
dc.identifier.journal.es_PE.fl_str_mv |
2021 International Conference on Electromagnetics in Advanced Applications, ICEAA |
dc.identifier.doi.none.fl_str_mv |
http://dx.doi.org/10.1109/ICEAA52647.2021.9539623 |
identifier_str_mv |
Chuqizuta, T., ...[et al.]. (2021). Dielectric spectral profiles for andean tubers classification: a machine learning techniques application. 2021 International Conference on Electromagnetics in Advanced Applications, ICEAA. http://dx.doi.org/10.1109/ICEAA52647.2021.9539623 2021 International Conference on Electromagnetics in Advanced Applications, ICEAA |
url |
https://hdl.handle.net/11537/31119 http://dx.doi.org/10.1109/ICEAA52647.2021.9539623 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
IEEE |
dc.publisher.country.es_PE.fl_str_mv |
US |
dc.source.es_PE.fl_str_mv |
Universidad Privada del Norte Repositorio Institucional - UPN |
dc.source.none.fl_str_mv |
reponame:UPN-Institucional instname:Universidad Privada del Norte instacron:UPN |
instname_str |
Universidad Privada del Norte |
instacron_str |
UPN |
institution |
UPN |
reponame_str |
UPN-Institucional |
collection |
UPN-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.upn.edu.pe/bitstream/11537/31119/1/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UPN |
repository.mail.fl_str_mv |
jordan.rivero@upn.edu.pe |
_version_ |
1752944308912128000 |
spelling |
Chuquizuta Trigoso, TonyOblitas Cruz, JimyArteaga Miñano, HubertYarleque, ManuelCastro Silupu, Wilson2022-08-09T20:28:25Z2022-08-09T20:28:25Z2021-09-21Chuqizuta, T., ...[et al.]. (2021). Dielectric spectral profiles for andean tubers classification: a machine learning techniques application. 2021 International Conference on Electromagnetics in Advanced Applications, ICEAA. http://dx.doi.org/10.1109/ICEAA52647.2021.9539623https://hdl.handle.net/11537/311192021 International Conference on Electromagnetics in Advanced Applications, ICEAAhttp://dx.doi.org/10.1109/ICEAA52647.2021.9539623El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.Currently, the agri-food industry prioritizes the development of non-destructive methods, such as dielectric spectroscopy, for quality control. The obtained dielectric spectral properties can be coupled to multivariate statistical methods as "machine learning" when identification of attributes is wanted. However, these techniques have not been applied to andean tubers classification. Therefore, the objective of the present investigation is to evaluate the possibility of discriminating four andean tubers using dielectric spectra properties and machine learning techniques (Support Vector Machine - SVM, K-Nearest Neighbors-KNN, and Linear Discriminat - LD). For this purpose, samples of Tropaeolum tuberosum (Killu isañu), Solanum tuberosa (yellow) and two varieties of Oxalis tuberosa (Puka kamusa and Lari oqa) were acquired, 30 units per tuber. The dielectric spectral profile was extracted twice for each tubers sample, in the range from 2 to 8 GHz. Then, the dielectric constant (e') were calculated, and its dimensionality was reduced using principal component analysis. Finally, models for classification were built by employing KNN, SVM and LD techniques. The results showed that three components can explain the variance at 99.6 %. Likewise, the accuracy in the discrimination values varied between 79.17 - 83.04, being SVM the best discrimination technique. Consequently, it is concluded that the technique of dielectric spectroscopy and machine learning presents potential for andean tuber discrimination.Revisión por paresCajamarcaapplication/pdfengIEEEUSinfo:eu-repo/semantics/closedAccessUniversidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNEspectroscopiaProductos agrícolasTubérculosControl de calidadIndustriaSpectroscopyQuality controlAndean tubershttps://purl.org/pe-repo/ocde/ford#2.11.04Dielectric spectral profiles for andean tubers classification: a machine learning techniques applicationinfo:eu-repo/semantics/conferenceObjectLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/31119/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5111537/31119oai:repositorio.upn.edu.pe:11537/311192022-08-09 15:58:25.334Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.982926 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).