Computational model, based on machine learning, to predict the level of success in legal cases

Descripción del Articulo

ABSTRACT With the development of information and communication technologies, new opportunities and applications of many technologies are emerging that before could not be thought to be used, in this sense artificial intelligence is the technology that has gained greater strength, accompanied by the...

Descripción completa

Detalles Bibliográficos
Autores: Auccahuasi, Wilver, Peláez, Brayan, Flores, Pedro, Rurbano, Kitty, Bernardo, Grisi, Bernardo, Madelaine, Sernaque, Fernando, Benites, Nicanor
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/26692
Enlace del recurso:https://hdl.handle.net/11537/26692
Nivel de acceso:acceso abierto
Materia:Simulación por computadora
Inteligencia artificial
Problemas laborales
Trabajo
https://purl.org/pe-repo/ocde/ford#2.02.04
id UUPN_0585f2053c526a58432a575bb92d8540
oai_identifier_str oai:repositorio.upn.edu.pe:11537/26692
network_acronym_str UUPN
network_name_str UPN-Institucional
repository_id_str 1873
dc.title.es_PE.fl_str_mv Computational model, based on machine learning, to predict the level of success in legal cases
title Computational model, based on machine learning, to predict the level of success in legal cases
spellingShingle Computational model, based on machine learning, to predict the level of success in legal cases
Auccahuasi, Wilver
Simulación por computadora
Inteligencia artificial
Problemas laborales
Trabajo
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Computational model, based on machine learning, to predict the level of success in legal cases
title_full Computational model, based on machine learning, to predict the level of success in legal cases
title_fullStr Computational model, based on machine learning, to predict the level of success in legal cases
title_full_unstemmed Computational model, based on machine learning, to predict the level of success in legal cases
title_sort Computational model, based on machine learning, to predict the level of success in legal cases
author Auccahuasi, Wilver
author_facet Auccahuasi, Wilver
Peláez, Brayan
Flores, Pedro
Rurbano, Kitty
Bernardo, Grisi
Bernardo, Madelaine
Sernaque, Fernando
Benites, Nicanor
author_role author
author2 Peláez, Brayan
Flores, Pedro
Rurbano, Kitty
Bernardo, Grisi
Bernardo, Madelaine
Sernaque, Fernando
Benites, Nicanor
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Auccahuasi, Wilver
Peláez, Brayan
Flores, Pedro
Rurbano, Kitty
Bernardo, Grisi
Bernardo, Madelaine
Sernaque, Fernando
Benites, Nicanor
dc.subject.es_PE.fl_str_mv Simulación por computadora
Inteligencia artificial
Problemas laborales
Trabajo
topic Simulación por computadora
Inteligencia artificial
Problemas laborales
Trabajo
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description ABSTRACT With the development of information and communication technologies, new opportunities and applications of many technologies are emerging that before could not be thought to be used, in this sense artificial intelligence is the technology that has gained greater strength, accompanied by the development of hardware that makes its execution possible and of software tools that make its implementation possible. The neural network is one of the most used techniques in the field of artificial intelligence. This work is based on analyzing possible cases of labor judicial problems, when workers who have suffered an abuse by employers are faced with. The success of the case according to the model presented, is based on being able to have the majority of documentation that evidences both the employment relationship, responsibilities of the employees, documents that support the payment of remuneration, documents that evidence any fault committed by the employee between others, a computational model was developed with a graphical user interface to make its application more practical. The model presents an effectiveness level of 93%, analyzed with 400 cases between positive and negative. For the training process, 100 cases corresponding to positive cases and 100 cases corresponding to negative cases were used. The model is practical in its use and can be scalable to different areas in the legal field.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-06-03T15:14:25Z
dc.date.available.none.fl_str_mv 2021-06-03T15:14:25Z
dc.date.issued.fl_str_mv 2020-11-30
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Auccahuasi, W. ...[et al]. (2020). Computational model, based on machine learning, to predict the level of success in legal cases. PalArch’s Journal of Archaeology of Egypt / Egyptology, 17(6), 1775-1781. https://archives.palarch.nl/index.php/jae/article/view/1061
dc.identifier.issn.none.fl_str_mv 1567-214X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11537/26692
dc.identifier.journal.es_PE.fl_str_mv PalArch’s Journal of Archaeology of Egypt / Egyptology
identifier_str_mv Auccahuasi, W. ...[et al]. (2020). Computational model, based on machine learning, to predict the level of success in legal cases. PalArch’s Journal of Archaeology of Egypt / Egyptology, 17(6), 1775-1781. https://archives.palarch.nl/index.php/jae/article/view/1061
1567-214X
PalArch’s Journal of Archaeology of Egypt / Egyptology
url https://hdl.handle.net/11537/26692
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv PalArch Foundation
dc.publisher.country.es_PE.fl_str_mv NL
dc.source.es_PE.fl_str_mv Universidad Privada del Norte
Repositorio Institucional - UPN
dc.source.none.fl_str_mv reponame:UPN-Institucional
instname:Universidad Privada del Norte
instacron:UPN
instname_str Universidad Privada del Norte
instacron_str UPN
institution UPN
reponame_str UPN-Institucional
collection UPN-Institucional
bitstream.url.fl_str_mv https://repositorio.upn.edu.pe/bitstream/11537/26692/4/Computational%20model%2c%20based%20on%20machine%20learning%2c%20to%20predict%20the%20level%20of%20success%20in%20legal%20cases.pdf.txt
https://repositorio.upn.edu.pe/bitstream/11537/26692/5/Computational%20model%2c%20based%20on%20machine%20learning%2c%20to%20predict%20the%20level%20of%20success%20in%20legal%20cases.pdf.jpg
https://repositorio.upn.edu.pe/bitstream/11537/26692/3/license.txt
https://repositorio.upn.edu.pe/bitstream/11537/26692/1/Computational%20model%2c%20based%20on%20machine%20learning%2c%20to%20predict%20the%20level%20of%20success%20in%20legal%20cases.pdf
https://repositorio.upn.edu.pe/bitstream/11537/26692/2/license_rdf
bitstream.checksum.fl_str_mv 2a6435c331ec92b5deef84051884973e
d8a5aa80d17424e2c57a7c6eaa39f42c
8a4605be74aa9ea9d79846c1fba20a33
6d5318f02fca5b7875fd3cfa2d4047c1
80294ba9ff4c5b4f07812ee200fbc42f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UPN
repository.mail.fl_str_mv jordan.rivero@upn.edu.pe
_version_ 1752944104392622080
spelling Auccahuasi, WilverPeláez, BrayanFlores, PedroRurbano, KittyBernardo, GrisiBernardo, MadelaineSernaque, FernandoBenites, Nicanor2021-06-03T15:14:25Z2021-06-03T15:14:25Z2020-11-30Auccahuasi, W. ...[et al]. (2020). Computational model, based on machine learning, to predict the level of success in legal cases. PalArch’s Journal of Archaeology of Egypt / Egyptology, 17(6), 1775-1781. https://archives.palarch.nl/index.php/jae/article/view/10611567-214Xhttps://hdl.handle.net/11537/26692PalArch’s Journal of Archaeology of Egypt / EgyptologyABSTRACT With the development of information and communication technologies, new opportunities and applications of many technologies are emerging that before could not be thought to be used, in this sense artificial intelligence is the technology that has gained greater strength, accompanied by the development of hardware that makes its execution possible and of software tools that make its implementation possible. The neural network is one of the most used techniques in the field of artificial intelligence. This work is based on analyzing possible cases of labor judicial problems, when workers who have suffered an abuse by employers are faced with. The success of the case according to the model presented, is based on being able to have the majority of documentation that evidences both the employment relationship, responsibilities of the employees, documents that support the payment of remuneration, documents that evidence any fault committed by the employee between others, a computational model was developed with a graphical user interface to make its application more practical. The model presents an effectiveness level of 93%, analyzed with 400 cases between positive and negative. For the training process, 100 cases corresponding to positive cases and 100 cases corresponding to negative cases were used. The model is practical in its use and can be scalable to different areas in the legal field.application/pdfengPalArch FoundationNLinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNSimulación por computadoraInteligencia artificialProblemas laboralesTrabajohttps://purl.org/pe-repo/ocde/ford#2.02.04Computational model, based on machine learning, to predict the level of success in legal casesinfo:eu-repo/semantics/articleTEXTComputational model, based on machine learning, to predict the level of success in legal cases.pdf.txtComputational model, based on machine learning, to predict the level of success in legal cases.pdf.txtExtracted texttext/plain14968https://repositorio.upn.edu.pe/bitstream/11537/26692/4/Computational%20model%2c%20based%20on%20machine%20learning%2c%20to%20predict%20the%20level%20of%20success%20in%20legal%20cases.pdf.txt2a6435c331ec92b5deef84051884973eMD54THUMBNAILComputational model, based on machine learning, to predict the level of success in legal cases.pdf.jpgComputational model, based on machine learning, to predict the level of success in legal cases.pdf.jpgGenerated Thumbnailimage/jpeg4444https://repositorio.upn.edu.pe/bitstream/11537/26692/5/Computational%20model%2c%20based%20on%20machine%20learning%2c%20to%20predict%20the%20level%20of%20success%20in%20legal%20cases.pdf.jpgd8a5aa80d17424e2c57a7c6eaa39f42cMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/26692/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALComputational model, based on machine learning, to predict the level of success in legal cases.pdfComputational model, based on machine learning, to predict the level of success in legal cases.pdfapplication/pdf327632https://repositorio.upn.edu.pe/bitstream/11537/26692/1/Computational%20model%2c%20based%20on%20machine%20learning%2c%20to%20predict%20the%20level%20of%20success%20in%20legal%20cases.pdf6d5318f02fca5b7875fd3cfa2d4047c1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/26692/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD5211537/26692oai:repositorio.upn.edu.pe:11537/266922021-06-03 22:01:59.293Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.914502
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).