Computational model, based on machine learning, to predict the level of success in legal cases
Descripción del Articulo
ABSTRACT With the development of information and communication technologies, new opportunities and applications of many technologies are emerging that before could not be thought to be used, in this sense artificial intelligence is the technology that has gained greater strength, accompanied by the...
Autores: | , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Universidad Privada del Norte |
Repositorio: | UPN-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.upn.edu.pe:11537/26692 |
Enlace del recurso: | https://hdl.handle.net/11537/26692 |
Nivel de acceso: | acceso abierto |
Materia: | Simulación por computadora Inteligencia artificial Problemas laborales Trabajo https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
UUPN_0585f2053c526a58432a575bb92d8540 |
---|---|
oai_identifier_str |
oai:repositorio.upn.edu.pe:11537/26692 |
network_acronym_str |
UUPN |
network_name_str |
UPN-Institucional |
repository_id_str |
1873 |
dc.title.es_PE.fl_str_mv |
Computational model, based on machine learning, to predict the level of success in legal cases |
title |
Computational model, based on machine learning, to predict the level of success in legal cases |
spellingShingle |
Computational model, based on machine learning, to predict the level of success in legal cases Auccahuasi, Wilver Simulación por computadora Inteligencia artificial Problemas laborales Trabajo https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Computational model, based on machine learning, to predict the level of success in legal cases |
title_full |
Computational model, based on machine learning, to predict the level of success in legal cases |
title_fullStr |
Computational model, based on machine learning, to predict the level of success in legal cases |
title_full_unstemmed |
Computational model, based on machine learning, to predict the level of success in legal cases |
title_sort |
Computational model, based on machine learning, to predict the level of success in legal cases |
author |
Auccahuasi, Wilver |
author_facet |
Auccahuasi, Wilver Peláez, Brayan Flores, Pedro Rurbano, Kitty Bernardo, Grisi Bernardo, Madelaine Sernaque, Fernando Benites, Nicanor |
author_role |
author |
author2 |
Peláez, Brayan Flores, Pedro Rurbano, Kitty Bernardo, Grisi Bernardo, Madelaine Sernaque, Fernando Benites, Nicanor |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Auccahuasi, Wilver Peláez, Brayan Flores, Pedro Rurbano, Kitty Bernardo, Grisi Bernardo, Madelaine Sernaque, Fernando Benites, Nicanor |
dc.subject.es_PE.fl_str_mv |
Simulación por computadora Inteligencia artificial Problemas laborales Trabajo |
topic |
Simulación por computadora Inteligencia artificial Problemas laborales Trabajo https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
ABSTRACT With the development of information and communication technologies, new opportunities and applications of many technologies are emerging that before could not be thought to be used, in this sense artificial intelligence is the technology that has gained greater strength, accompanied by the development of hardware that makes its execution possible and of software tools that make its implementation possible. The neural network is one of the most used techniques in the field of artificial intelligence. This work is based on analyzing possible cases of labor judicial problems, when workers who have suffered an abuse by employers are faced with. The success of the case according to the model presented, is based on being able to have the majority of documentation that evidences both the employment relationship, responsibilities of the employees, documents that support the payment of remuneration, documents that evidence any fault committed by the employee between others, a computational model was developed with a graphical user interface to make its application more practical. The model presents an effectiveness level of 93%, analyzed with 400 cases between positive and negative. For the training process, 100 cases corresponding to positive cases and 100 cases corresponding to negative cases were used. The model is practical in its use and can be scalable to different areas in the legal field. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-06-03T15:14:25Z |
dc.date.available.none.fl_str_mv |
2021-06-03T15:14:25Z |
dc.date.issued.fl_str_mv |
2020-11-30 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Auccahuasi, W. ...[et al]. (2020). Computational model, based on machine learning, to predict the level of success in legal cases. PalArch’s Journal of Archaeology of Egypt / Egyptology, 17(6), 1775-1781. https://archives.palarch.nl/index.php/jae/article/view/1061 |
dc.identifier.issn.none.fl_str_mv |
1567-214X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11537/26692 |
dc.identifier.journal.es_PE.fl_str_mv |
PalArch’s Journal of Archaeology of Egypt / Egyptology |
identifier_str_mv |
Auccahuasi, W. ...[et al]. (2020). Computational model, based on machine learning, to predict the level of success in legal cases. PalArch’s Journal of Archaeology of Egypt / Egyptology, 17(6), 1775-1781. https://archives.palarch.nl/index.php/jae/article/view/1061 1567-214X PalArch’s Journal of Archaeology of Egypt / Egyptology |
url |
https://hdl.handle.net/11537/26692 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
PalArch Foundation |
dc.publisher.country.es_PE.fl_str_mv |
NL |
dc.source.es_PE.fl_str_mv |
Universidad Privada del Norte Repositorio Institucional - UPN |
dc.source.none.fl_str_mv |
reponame:UPN-Institucional instname:Universidad Privada del Norte instacron:UPN |
instname_str |
Universidad Privada del Norte |
instacron_str |
UPN |
institution |
UPN |
reponame_str |
UPN-Institucional |
collection |
UPN-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.upn.edu.pe/bitstream/11537/26692/4/Computational%20model%2c%20based%20on%20machine%20learning%2c%20to%20predict%20the%20level%20of%20success%20in%20legal%20cases.pdf.txt https://repositorio.upn.edu.pe/bitstream/11537/26692/5/Computational%20model%2c%20based%20on%20machine%20learning%2c%20to%20predict%20the%20level%20of%20success%20in%20legal%20cases.pdf.jpg https://repositorio.upn.edu.pe/bitstream/11537/26692/3/license.txt https://repositorio.upn.edu.pe/bitstream/11537/26692/1/Computational%20model%2c%20based%20on%20machine%20learning%2c%20to%20predict%20the%20level%20of%20success%20in%20legal%20cases.pdf https://repositorio.upn.edu.pe/bitstream/11537/26692/2/license_rdf |
bitstream.checksum.fl_str_mv |
2a6435c331ec92b5deef84051884973e d8a5aa80d17424e2c57a7c6eaa39f42c 8a4605be74aa9ea9d79846c1fba20a33 6d5318f02fca5b7875fd3cfa2d4047c1 80294ba9ff4c5b4f07812ee200fbc42f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UPN |
repository.mail.fl_str_mv |
jordan.rivero@upn.edu.pe |
_version_ |
1752944104392622080 |
spelling |
Auccahuasi, WilverPeláez, BrayanFlores, PedroRurbano, KittyBernardo, GrisiBernardo, MadelaineSernaque, FernandoBenites, Nicanor2021-06-03T15:14:25Z2021-06-03T15:14:25Z2020-11-30Auccahuasi, W. ...[et al]. (2020). Computational model, based on machine learning, to predict the level of success in legal cases. PalArch’s Journal of Archaeology of Egypt / Egyptology, 17(6), 1775-1781. https://archives.palarch.nl/index.php/jae/article/view/10611567-214Xhttps://hdl.handle.net/11537/26692PalArch’s Journal of Archaeology of Egypt / EgyptologyABSTRACT With the development of information and communication technologies, new opportunities and applications of many technologies are emerging that before could not be thought to be used, in this sense artificial intelligence is the technology that has gained greater strength, accompanied by the development of hardware that makes its execution possible and of software tools that make its implementation possible. The neural network is one of the most used techniques in the field of artificial intelligence. This work is based on analyzing possible cases of labor judicial problems, when workers who have suffered an abuse by employers are faced with. The success of the case according to the model presented, is based on being able to have the majority of documentation that evidences both the employment relationship, responsibilities of the employees, documents that support the payment of remuneration, documents that evidence any fault committed by the employee between others, a computational model was developed with a graphical user interface to make its application more practical. The model presents an effectiveness level of 93%, analyzed with 400 cases between positive and negative. For the training process, 100 cases corresponding to positive cases and 100 cases corresponding to negative cases were used. The model is practical in its use and can be scalable to different areas in the legal field.application/pdfengPalArch FoundationNLinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNSimulación por computadoraInteligencia artificialProblemas laboralesTrabajohttps://purl.org/pe-repo/ocde/ford#2.02.04Computational model, based on machine learning, to predict the level of success in legal casesinfo:eu-repo/semantics/articleTEXTComputational model, based on machine learning, to predict the level of success in legal cases.pdf.txtComputational model, based on machine learning, to predict the level of success in legal cases.pdf.txtExtracted texttext/plain14968https://repositorio.upn.edu.pe/bitstream/11537/26692/4/Computational%20model%2c%20based%20on%20machine%20learning%2c%20to%20predict%20the%20level%20of%20success%20in%20legal%20cases.pdf.txt2a6435c331ec92b5deef84051884973eMD54THUMBNAILComputational model, based on machine learning, to predict the level of success in legal cases.pdf.jpgComputational model, based on machine learning, to predict the level of success in legal cases.pdf.jpgGenerated Thumbnailimage/jpeg4444https://repositorio.upn.edu.pe/bitstream/11537/26692/5/Computational%20model%2c%20based%20on%20machine%20learning%2c%20to%20predict%20the%20level%20of%20success%20in%20legal%20cases.pdf.jpgd8a5aa80d17424e2c57a7c6eaa39f42cMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/26692/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALComputational model, based on machine learning, to predict the level of success in legal cases.pdfComputational model, based on machine learning, to predict the level of success in legal cases.pdfapplication/pdf327632https://repositorio.upn.edu.pe/bitstream/11537/26692/1/Computational%20model%2c%20based%20on%20machine%20learning%2c%20to%20predict%20the%20level%20of%20success%20in%20legal%20cases.pdf6d5318f02fca5b7875fd3cfa2d4047c1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/26692/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD5211537/26692oai:repositorio.upn.edu.pe:11537/266922021-06-03 22:01:59.293Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.914502 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).