Approach for Personalized Recommendations to Enhance Customer Service Process in Peruvian Restaurants using OpenAI Contextual Chatbot

Descripción del Articulo

In the current digital era, efficiently accessing relevant information is crucial for various applications such as restaurant recommendation systems, website searches, book recommendations, among others. This study presents an approach for personalized recommendations in improving the customer servi...

Descripción completa

Detalles Bibliográficos
Autores: Romero, Fabiola Cieza, Pajes Leon, Sebastian, Wong, Lenis
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/673090
Enlace del recurso:http://hdl.handle.net/10757/673090
Nivel de acceso:acceso embargado
Materia:chatbot
GPT-3.5
information retrieval
OpenAI embeddings API
recommendation systems
Descripción
Sumario:In the current digital era, efficiently accessing relevant information is crucial for various applications such as restaurant recommendation systems, website searches, book recommendations, among others. This study presents an approach for personalized recommendations in improving the customer service process in restaurants using OpenAI's Contextual Chatbot. The approach consists of six phases: (1) Data preprocessing, (2) Embedding and storage, (3) Scheduled updating, (4) Document retrieval, (5) Context adaptation and request creation, and (6) Response generation. OpenAI's text embeddings are used to convert application data into vectors and store them in a vector database. These vectors are used to retrieve similar records and generate contextualized responses using the GPT-3.5 model. The chatbot's performance is evaluated in terms of accuracy and user satisfaction. Two scenarios were used in the experimentation: (a) with the proposed solution and (b) without the solution. The results demonstrated an operational efficiency of 86.67% with the proposed solution and the versatility of the proposed methodology, showcasing its potential for application in a wide range of domains, including websites, books, PDFs, and other forms of documentation.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).