Gyms Customer Loyalty Using the Logistic Regression Algorithm Technique
Descripción del Articulo
The objective of this work is to implement the logistic regression technique in datasets of gyms to identify and make a respective analysis for a correct segmentation of clients and, in this way, maximize the possibility of retaining clients; this will also allow us to rule out wrong decisions and i...
Autores: | , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/669235 |
Enlace del recurso: | http://hdl.handle.net/10757/669235 |
Nivel de acceso: | acceso embargado |
Materia: | algorithm customer loyalty gyms logistic regression |
id |
UUPC_fc2897ad5efe8b5731c567687de7e0d0 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/669235 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Gyms Customer Loyalty Using the Logistic Regression Algorithm Technique |
title |
Gyms Customer Loyalty Using the Logistic Regression Algorithm Technique |
spellingShingle |
Gyms Customer Loyalty Using the Logistic Regression Algorithm Technique Munoz, Joaquin Moreno algorithm customer loyalty gyms logistic regression |
title_short |
Gyms Customer Loyalty Using the Logistic Regression Algorithm Technique |
title_full |
Gyms Customer Loyalty Using the Logistic Regression Algorithm Technique |
title_fullStr |
Gyms Customer Loyalty Using the Logistic Regression Algorithm Technique |
title_full_unstemmed |
Gyms Customer Loyalty Using the Logistic Regression Algorithm Technique |
title_sort |
Gyms Customer Loyalty Using the Logistic Regression Algorithm Technique |
author |
Munoz, Joaquin Moreno |
author_facet |
Munoz, Joaquin Moreno Osorio, Miguel Ramirez Rodriguez, Ciro Rodriguez, Diego Lezama, Pedro Pomachagua, Yuri |
author_role |
author |
author2 |
Osorio, Miguel Ramirez Rodriguez, Ciro Rodriguez, Diego Lezama, Pedro Pomachagua, Yuri |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Munoz, Joaquin Moreno Osorio, Miguel Ramirez Rodriguez, Ciro Rodriguez, Diego Lezama, Pedro Pomachagua, Yuri |
dc.subject.es_PE.fl_str_mv |
algorithm customer loyalty gyms logistic regression |
topic |
algorithm customer loyalty gyms logistic regression |
description |
The objective of this work is to implement the logistic regression technique in datasets of gyms to identify and make a respective analysis for a correct segmentation of clients and, in this way, maximize the possibility of retaining clients; this will also allow us to rule out wrong decisions and incorrect assumptions, in addition to optimizing management according to customer data, which will be vital for a correct loyalty of gym users. The precision calculated the loyalty by the logistic regression algorithm considering important factors such as the rate of abandonment. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-11-07T16:36:42Z |
dc.date.available.none.fl_str_mv |
2023-11-07T16:36:42Z |
dc.date.issued.fl_str_mv |
2022-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.1109/CICN56167.2022.10008370 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/669235 |
dc.identifier.journal.es_PE.fl_str_mv |
Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022 |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85146851691 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85146851691 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
dc.identifier.ror.none.fl_str_mv |
047xrr705 |
identifier_str_mv |
10.1109/CICN56167.2022.10008370 Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022 2-s2.0-85146851691 SCOPUS_ID:85146851691 0000 0001 2196 144X 047xrr705 |
url |
http://hdl.handle.net/10757/669235 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Academico - UPC |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022 |
dc.source.beginpage.none.fl_str_mv |
204 |
dc.source.endpage.none.fl_str_mv |
212 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/669235/2/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/669235/1/license_rdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 934f4ca17e109e0a05eaeaba504d7ce4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837186812505751552 |
spelling |
9a1cb9258a3aefb3972d5c1b434344b43009f2c11ccda525107a765d8768383741a3001481cf04c578bc015c4403f7826ae2f25008001a598412e418a24a4afd84d68f628062a7deb0d67c2c464054d24853cd721040bf31ff65f6806d23fcaf71e9ea5d3300Munoz, Joaquin MorenoOsorio, Miguel RamirezRodriguez, CiroRodriguez, DiegoLezama, PedroPomachagua, Yuri2023-11-07T16:36:42Z2023-11-07T16:36:42Z2022-01-0110.1109/CICN56167.2022.10008370http://hdl.handle.net/10757/669235Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 20222-s2.0-85146851691SCOPUS_ID:851468516910000 0001 2196 144X047xrr705The objective of this work is to implement the logistic regression technique in datasets of gyms to identify and make a respective analysis for a correct segmentation of clients and, in this way, maximize the possibility of retaining clients; this will also allow us to rule out wrong decisions and incorrect assumptions, in addition to optimizing management according to customer data, which will be vital for a correct loyalty of gym users. The precision calculated the loyalty by the logistic regression algorithm considering important factors such as the rate of abandonment.Revisión por paresapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/embargoedAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Universidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCProceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022204212reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCalgorithmcustomer loyaltygymslogistic regressionGyms Customer Loyalty Using the Logistic Regression Algorithm Techniqueinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/669235/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/669235/1/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD51false10757/669235oai:repositorioacademico.upc.edu.pe:10757/6692352023-11-07 16:36:43.064Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.958958 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).