Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
Descripción del Articulo
Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories su...
Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/659813 |
Enlace del recurso: | http://hdl.handle.net/10757/659813 |
Nivel de acceso: | acceso abierto |
Materia: | COVID-19 Health behaviors Machine learning Public goods dilemma Random forest Social norms |
id |
UUPC_f6c86200b41dd7390d66efb3cde683d9 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/659813 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic |
title |
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic |
spellingShingle |
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic van Lissa, Caspar J. COVID-19 Health behaviors Machine learning Public goods dilemma Random forest Social norms |
title_short |
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic |
title_full |
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic |
title_fullStr |
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic |
title_full_unstemmed |
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic |
title_sort |
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic |
author |
van Lissa, Caspar J. |
author_facet |
van Lissa, Caspar J. Stroebe, Wolfgang vanDellen, Michelle R. Leander, N. Pontus Agostini, Maximilian Draws, Tim Grygoryshyn, Andrii Gützgow, Ben Kreienkamp, Jannis Vetter, Clara S. Abakoumkin, Georgios Abdul Khaiyom, Jamilah Hanum Ahmedi, Vjolica Akkas, Handan Almenara, Carlos A. Atta, Mohsin Bagci, Sabahat Cigdem Basel, Sima Kida, Edona Berisha Bernardo, Allan B.I. Buttrick, Nicholas R. Chobthamkit, Phatthanakit Choi, Hoon Seok Cristea, Mioara Csaba, Sára Damnjanović, Kaja Danyliuk, Ivan Dash, Arobindu Di Santo, Daniela Douglas, Karen M. Enea, Violeta Faller, Daiane Gracieli Fitzsimons, Gavan J. Gheorghiu, Alexandra Gómez, Ángel Hamaidia, Ali Han, Qing Helmy, Mai Hudiyana, Joevarian Jeronimus, Bertus F. Jiang, Ding Yu Jovanović, Veljko Kamenov, Željka Kende, Anna Keng, Shian Ling Thanh Kieu, Tra Thi Koc, Yasin Kovyazina, Kamila Kozytska, Inna Krause, Joshua Kruglanksi, Arie W. Kurapov, Anton Kutlaca, Maja Lantos, Nóra Anna Lemay, Edward P. Jaya Lesmana, Cokorda Bagus Louis, Winnifred R. Lueders, Adrian Malik, Najma Iqbal Martinez, Anton P. McCabe, Kira O. Mehulić, Jasmina Milla, Mirra Noor Mohammed, Idris Molinario, Erica Moyano, Manuel Muhammad, Hayat Mula, Silvana Muluk, Hamdi Myroniuk, Solomiia Najafi, Reza Nisa, Claudia F. Nyúl, Boglárka O'Keefe, Paul A. Olivas Osuna, Jose Javier Osin, Evgeny N. Park, Joonha Pica, Gennaro Pierro, Antonio Rees, Jonas H. Reitsema, Anne Margit Resta, Elena Rullo, Marika Ryan, Michelle K. Samekin, Adil Santtila, Pekka Sasin, Edyta M. Schumpe, Birga M. Selim, Heyla A. Stanton, Michael Vicente Sultana, Samiah Sutton, Robbie M. Tseliou, Eleftheria Utsugi, Akira Anne van Breen, Jolien van Veen, Kees Vázquez, Alexandra Wollast, Robin Wai-Lan Yeung, Victoria Zand, Somayeh |
author_role |
author |
author2 |
Stroebe, Wolfgang vanDellen, Michelle R. Leander, N. Pontus Agostini, Maximilian Draws, Tim Grygoryshyn, Andrii Gützgow, Ben Kreienkamp, Jannis Vetter, Clara S. Abakoumkin, Georgios Abdul Khaiyom, Jamilah Hanum Ahmedi, Vjolica Akkas, Handan Almenara, Carlos A. Atta, Mohsin Bagci, Sabahat Cigdem Basel, Sima Kida, Edona Berisha Bernardo, Allan B.I. Buttrick, Nicholas R. Chobthamkit, Phatthanakit Choi, Hoon Seok Cristea, Mioara Csaba, Sára Damnjanović, Kaja Danyliuk, Ivan Dash, Arobindu Di Santo, Daniela Douglas, Karen M. Enea, Violeta Faller, Daiane Gracieli Fitzsimons, Gavan J. Gheorghiu, Alexandra Gómez, Ángel Hamaidia, Ali Han, Qing Helmy, Mai Hudiyana, Joevarian Jeronimus, Bertus F. Jiang, Ding Yu Jovanović, Veljko Kamenov, Željka Kende, Anna Keng, Shian Ling Thanh Kieu, Tra Thi Koc, Yasin Kovyazina, Kamila Kozytska, Inna Krause, Joshua Kruglanksi, Arie W. Kurapov, Anton Kutlaca, Maja Lantos, Nóra Anna Lemay, Edward P. Jaya Lesmana, Cokorda Bagus Louis, Winnifred R. Lueders, Adrian Malik, Najma Iqbal Martinez, Anton P. McCabe, Kira O. Mehulić, Jasmina Milla, Mirra Noor Mohammed, Idris Molinario, Erica Moyano, Manuel Muhammad, Hayat Mula, Silvana Muluk, Hamdi Myroniuk, Solomiia Najafi, Reza Nisa, Claudia F. Nyúl, Boglárka O'Keefe, Paul A. Olivas Osuna, Jose Javier Osin, Evgeny N. Park, Joonha Pica, Gennaro Pierro, Antonio Rees, Jonas H. Reitsema, Anne Margit Resta, Elena Rullo, Marika Ryan, Michelle K. Samekin, Adil Santtila, Pekka Sasin, Edyta M. Schumpe, Birga M. Selim, Heyla A. Stanton, Michael Vicente Sultana, Samiah Sutton, Robbie M. Tseliou, Eleftheria Utsugi, Akira Anne van Breen, Jolien van Veen, Kees Vázquez, Alexandra Wollast, Robin Wai-Lan Yeung, Victoria Zand, Somayeh |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
van Lissa, Caspar J. Stroebe, Wolfgang vanDellen, Michelle R. Leander, N. Pontus Agostini, Maximilian Draws, Tim Grygoryshyn, Andrii Gützgow, Ben Kreienkamp, Jannis Vetter, Clara S. Abakoumkin, Georgios Abdul Khaiyom, Jamilah Hanum Ahmedi, Vjolica Akkas, Handan Almenara, Carlos A. Atta, Mohsin Bagci, Sabahat Cigdem Basel, Sima Kida, Edona Berisha Bernardo, Allan B.I. Buttrick, Nicholas R. Chobthamkit, Phatthanakit Choi, Hoon Seok Cristea, Mioara Csaba, Sára Damnjanović, Kaja Danyliuk, Ivan Dash, Arobindu Di Santo, Daniela Douglas, Karen M. Enea, Violeta Faller, Daiane Gracieli Fitzsimons, Gavan J. Gheorghiu, Alexandra Gómez, Ángel Hamaidia, Ali Han, Qing Helmy, Mai Hudiyana, Joevarian Jeronimus, Bertus F. Jiang, Ding Yu Jovanović, Veljko Kamenov, Željka Kende, Anna Keng, Shian Ling Thanh Kieu, Tra Thi Koc, Yasin Kovyazina, Kamila Kozytska, Inna Krause, Joshua Kruglanksi, Arie W. Kurapov, Anton Kutlaca, Maja Lantos, Nóra Anna Lemay, Edward P. Jaya Lesmana, Cokorda Bagus Louis, Winnifred R. Lueders, Adrian Malik, Najma Iqbal Martinez, Anton P. McCabe, Kira O. Mehulić, Jasmina Milla, Mirra Noor Mohammed, Idris Molinario, Erica Moyano, Manuel Muhammad, Hayat Mula, Silvana Muluk, Hamdi Myroniuk, Solomiia Najafi, Reza Nisa, Claudia F. Nyúl, Boglárka O'Keefe, Paul A. Olivas Osuna, Jose Javier Osin, Evgeny N. Park, Joonha Pica, Gennaro Pierro, Antonio Rees, Jonas H. Reitsema, Anne Margit Resta, Elena Rullo, Marika Ryan, Michelle K. Samekin, Adil Santtila, Pekka Sasin, Edyta M. Schumpe, Birga M. Selim, Heyla A. Stanton, Michael Vicente Sultana, Samiah Sutton, Robbie M. Tseliou, Eleftheria Utsugi, Akira Anne van Breen, Jolien van Veen, Kees Vázquez, Alexandra Wollast, Robin Wai-Lan Yeung, Victoria Zand, Somayeh |
dc.subject.es_PE.fl_str_mv |
COVID-19 Health behaviors Machine learning Public goods dilemma Random forest Social norms |
topic |
COVID-19 Health behaviors Machine learning Public goods dilemma Random forest Social norms |
description |
Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-05-06T15:50:47Z |
dc.date.available.none.fl_str_mv |
2022-05-06T15:50:47Z |
dc.date.issued.fl_str_mv |
2022-04-08 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.patter.2022.100482 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/659813 |
dc.identifier.eissn.none.fl_str_mv |
26663899 |
dc.identifier.journal.es_PE.fl_str_mv |
Patterns |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85127500709 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85127500709 |
dc.identifier.pii.none.fl_str_mv |
S2666389922000678 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
10.1016/j.patter.2022.100482 26663899 Patterns 2-s2.0-85127500709 SCOPUS_ID:85127500709 S2666389922000678 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/659813 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://www.cell.com/patterns/fulltext/S2666-3899(22)00067-8 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Cell Press |
dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Academico - UPC |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Patterns |
dc.source.volume.none.fl_str_mv |
3 |
dc.source.issue.none.fl_str_mv |
4 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/5/10.1016_j.patter.2022.100482.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/4/10.1016_j.patter.2022.100482.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/1/10.1016_j.patter.2022.100482.pdf |
bitstream.checksum.fl_str_mv |
dba8aaa5e9fb08b71db094d8e9d741da 74d16b6dc5e9291d3fdd1baaa9b6481c 8a4605be74aa9ea9d79846c1fba20a33 934f4ca17e109e0a05eaeaba504d7ce4 34dd326546cbe3b5eb1bb6468e1bb7b6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837188465524998144 |
spelling |
a68d2e71f920cb1fe07c11a308a561e9500d8a15f07e2a9d522de810eb5800ecad0500696695e4d866d0827a35147c95315547f92a65406937c48a531ffe332a742d135005ea4b83370b105c4c646eba241bb57e65006782efaf10c4724bc5c694765353ea4030015c60d618724971a0a94f6d699fc5f31300072bf27c73bc9e9a53edb5ea9fe283fb300220a7d8045e55150c71b5e7276f35c7d500a66b7a1ee1c3b48f54274605523cadb630052b92e67a57122e50c70c16696d2affe5002faf3da9b6327eaf65d507cffef13b402921f9fa434b7bf700cefde5774abb0a50012de1fd4fb60c442a009fad5a7da62fd5009380f0e4470e7af797885d850ff1a6087910be1b68d082f7a586d6c193ae6de65003fdf6101b4b57262eea0d0f426ec6e96500d068889ca64dc589cfb10882d60c7dd050014356bcd4bc7209c24b68aa6fac10a615009e27686e178759ac24b84bbbd1f4f644500ba43a58c6a5dbe1b318b4ca0e641d2d75007ee61f2c89f22ada112bffeb98c80f45500ef817ea299b6f3e6d60db3db316cab3d500550080b71c6d74a5b0835a81abb9ad12500f883212fd6e49ed5e7698631e9bdd81a50081827d9c72517a6581612630e6d7e4695001747f5229d69d3f49fc16ffb31ab0fca50030068af3618bbb92b353e7965e995bcf500f9730a90b2710b23b20bd48f045fae511612f40aa41fd53acd474a254a8f5b1f5007207b5ed297780287782553281d8bd035008996ca586fda24714dff335b25e5018b500cafd46c3cb901ee4d567c89640ed1e3a5009f79c5458d79258b3d7eed06119091a9500ae7fb9ab5c0462d03c019c04ef6a4fda50068d79c98c32efa3836cb2da11c5df90a500377efc22e2966a36f9b3ca05590d5139500c9255343418d08a76f6a1081092125e150070a01dfe54166bc15479a53fc1239bc85001670de614dcfe8135d8a222688f30c34500d2ae3be1275975839fa891f6912d70615000eebdabd114f3d120e3203a676c52793500221da6d919a684da928946cd32557d395002126a303bb20979527947e86d470916450002b95edea8a2873cc879e7e12ac3dca650068a38fb15652529e183a68b672192792c728d1f761d8f4de51e3af2965eb68275004f332f33c401879eb24087dca950cec75003af8c0e8066df0b2bc6b6d79d640a2d65005516492118c0239e2092996db04feaa15004e41ed7d5dfc741e519a32ce1a6932c4500a656bc1ba5224f7e24fcdef3af1b4776500913a4cd0c7b3dd064564e1f357f6fd6a500ad3e381c14713dfb59131b49843e11fd5009ca15b001c955d7646c7db681e6f562a500219055385c7be73b38507cd2acb4e90dfe072cfd0d480f83d72c1fa17069f652500bc4ab8dbdf0468a98269ed7d9a47b831500b626ff8ec3d210086dddeac1fcc1c13f500523e938702362643ab880849a4fdacdc5007b45224aa5b4c2580f69aa5fec1d252a50067b6b16db3d03efe8da37b7920fb613c500b0bf4ea8c040a9ceb7cff6c3820faa61500d343683b2fe18dadf238dee48adbb6ea50011bc32bfacb7d9b7a66ce596bcb0866c500dd80a12977c9bd18f710531f6f995bc2500fdebd06a0e65ee0633bebaa2de415da25006a3840c63d88503ceaede68a5c4fd919500f00058b45232573e7a6d06df00080ff8500289c50b26d4e2ba516deaca8f91a4e86500d3eee2598fe9eb3c21982c95d74b80a95002a3670b8c7d0e3721336ab691663eb09500bfbb1a6c462f97520565baec0c7c97bc500edfb9d574a6cf82809b451a0b289f14b500e744c3e918af2d8caf27757b27409940644321285b7aaadcc7811c527af617515004661052fcee68ef3be54b37827c96b39500b2620985e87229ce618d9e2c4183b361500a057aa837bc5c9a3d0b6a326c25d9a65500017ee7761fc881952e96576324c5c87f500ed95280f470be2eeafbe9c460c1f67b6500cac79152d8daedcdd7b764416431339d50057b45e91cebcdeea27ec68c13bb7a78a500d1486563463b04ce52228fb8008000a1500562ab51da8eeb5c9e91813ac33c2ec5b50031ae0627ea615334a692c7e3e4734b22500cf198d604de0c22e02d132ef474b034950014d63759a30f9e76f8a8eefc44907cd050026030cd2e1748437fbeb91f5e25a82c65009fe297ed28abb6e9ae6590d4bcc90c05500342a4fd9c65b5bbb5dfb0e22ce582312500336ccac2f88708399f289e687d819d19500cbb0f805da570ce0ae0df1d6e9f6e59550019120b488fb93d91cd5f050af46aedd9500eff1f3d839eece08c3d19246972c0c9b05fe4205735cfaaf95cc000b8b04e1c25006a4a41efe9ce316ec55a1531baee56a1500b8225a19ee6fe8a7d6e40c706153590c50086d310bbce60862f98e5981922823796351e59d53c23c9046a1e3eb604bfdb76500van Lissa, Caspar J.Stroebe, WolfgangvanDellen, Michelle R.Leander, N. PontusAgostini, MaximilianDraws, TimGrygoryshyn, AndriiGützgow, BenKreienkamp, JannisVetter, Clara S.Abakoumkin, GeorgiosAbdul Khaiyom, Jamilah HanumAhmedi, VjolicaAkkas, HandanAlmenara, Carlos A.Atta, MohsinBagci, Sabahat CigdemBasel, SimaKida, Edona BerishaBernardo, Allan B.I.Buttrick, Nicholas R.Chobthamkit, PhatthanakitChoi, Hoon SeokCristea, MioaraCsaba, SáraDamnjanović, KajaDanyliuk, IvanDash, ArobinduDi Santo, DanielaDouglas, Karen M.Enea, VioletaFaller, Daiane GracieliFitzsimons, Gavan J.Gheorghiu, AlexandraGómez, ÁngelHamaidia, AliHan, QingHelmy, MaiHudiyana, JoevarianJeronimus, Bertus F.Jiang, Ding YuJovanović, VeljkoKamenov, ŽeljkaKende, AnnaKeng, Shian LingThanh Kieu, Tra ThiKoc, YasinKovyazina, KamilaKozytska, InnaKrause, JoshuaKruglanksi, Arie W.Kurapov, AntonKutlaca, MajaLantos, Nóra AnnaLemay, Edward P.Jaya Lesmana, Cokorda BagusLouis, Winnifred R.Lueders, AdrianMalik, Najma IqbalMartinez, Anton P.McCabe, Kira O.Mehulić, JasminaMilla, Mirra NoorMohammed, IdrisMolinario, EricaMoyano, ManuelMuhammad, HayatMula, SilvanaMuluk, HamdiMyroniuk, SolomiiaNajafi, RezaNisa, Claudia F.Nyúl, BoglárkaO'Keefe, Paul A.Olivas Osuna, Jose JavierOsin, Evgeny N.Park, JoonhaPica, GennaroPierro, AntonioRees, Jonas H.Reitsema, Anne MargitResta, ElenaRullo, MarikaRyan, Michelle K.Samekin, AdilSanttila, PekkaSasin, Edyta M.Schumpe, Birga M.Selim, Heyla A.Stanton, Michael VicenteSultana, SamiahSutton, Robbie M.Tseliou, EleftheriaUtsugi, AkiraAnne van Breen, Jolienvan Veen, KeesVázquez, AlexandraWollast, RobinWai-Lan Yeung, VictoriaZand, Somayeh2022-05-06T15:50:47Z2022-05-06T15:50:47Z2022-04-0810.1016/j.patter.2022.100482http://hdl.handle.net/10757/65981326663899Patterns2-s2.0-85127500709SCOPUS_ID:85127500709S26663899220006780000 0001 2196 144XBefore vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant.New York University Abu DhabiRevisión por paresapplication/pdfengCell Presshttps://www.cell.com/patterns/fulltext/S2666-3899(22)00067-8info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Universidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCPatterns34reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCCOVID-19Health behaviorsMachine learningPublic goods dilemmaRandom forestSocial normsUsing machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemicinfo:eu-repo/semantics/article2022-05-06T15:50:48ZTHUMBNAIL10.1016_j.patter.2022.100482.pdf.jpg10.1016_j.patter.2022.100482.pdf.jpgGenerated Thumbnailimage/jpeg55200https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/5/10.1016_j.patter.2022.100482.pdf.jpgdba8aaa5e9fb08b71db094d8e9d741daMD55falseTEXT10.1016_j.patter.2022.100482.pdf.txt10.1016_j.patter.2022.100482.pdf.txtExtracted texttext/plain97558https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/4/10.1016_j.patter.2022.100482.pdf.txt74d16b6dc5e9291d3fdd1baaa9b6481cMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL10.1016_j.patter.2022.100482.pdf10.1016_j.patter.2022.100482.pdfapplication/pdf1832949https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/1/10.1016_j.patter.2022.100482.pdf34dd326546cbe3b5eb1bb6468e1bb7b6MD51true10757/659813oai:repositorioacademico.upc.edu.pe:10757/6598132022-05-07 02:54:34.515Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.959421 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).