Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic

Descripción del Articulo

Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories su...

Descripción completa

Detalles Bibliográficos
Autores: van Lissa, Caspar J., Stroebe, Wolfgang, vanDellen, Michelle R., Leander, N. Pontus, Agostini, Maximilian, Draws, Tim, Grygoryshyn, Andrii, Gützgow, Ben, Kreienkamp, Jannis, Vetter, Clara S., Abakoumkin, Georgios, Abdul Khaiyom, Jamilah Hanum, Ahmedi, Vjolica, Akkas, Handan, Almenara, Carlos A., Atta, Mohsin, Bagci, Sabahat Cigdem, Basel, Sima, Kida, Edona Berisha, Bernardo, Allan B.I., Buttrick, Nicholas R., Chobthamkit, Phatthanakit, Choi, Hoon Seok, Cristea, Mioara, Csaba, Sára, Damnjanović, Kaja, Danyliuk, Ivan, Dash, Arobindu, Di Santo, Daniela, Douglas, Karen M., Enea, Violeta, Faller, Daiane Gracieli, Fitzsimons, Gavan J., Gheorghiu, Alexandra, Gómez, Ángel, Hamaidia, Ali, Han, Qing, Helmy, Mai, Hudiyana, Joevarian, Jeronimus, Bertus F., Jiang, Ding Yu, Jovanović, Veljko, Kamenov, Željka, Kende, Anna, Keng, Shian Ling, Thanh Kieu, Tra Thi, Koc, Yasin, Kovyazina, Kamila, Kozytska, Inna, Krause, Joshua, Kruglanksi, Arie W., Kurapov, Anton, Kutlaca, Maja, Lantos, Nóra Anna, Lemay, Edward P., Jaya Lesmana, Cokorda Bagus, Louis, Winnifred R., Lueders, Adrian, Malik, Najma Iqbal, Martinez, Anton P., McCabe, Kira O., Mehulić, Jasmina, Milla, Mirra Noor, Mohammed, Idris, Molinario, Erica, Moyano, Manuel, Muhammad, Hayat, Mula, Silvana, Muluk, Hamdi, Myroniuk, Solomiia, Najafi, Reza, Nisa, Claudia F., Nyúl, Boglárka, O'Keefe, Paul A., Olivas Osuna, Jose Javier, Osin, Evgeny N., Park, Joonha, Pica, Gennaro, Pierro, Antonio, Rees, Jonas H., Reitsema, Anne Margit, Resta, Elena, Rullo, Marika, Ryan, Michelle K., Samekin, Adil, Santtila, Pekka, Sasin, Edyta M., Schumpe, Birga M., Selim, Heyla A., Stanton, Michael Vicente, Sultana, Samiah, Sutton, Robbie M., Tseliou, Eleftheria, Utsugi, Akira, Anne van Breen, Jolien, van Veen, Kees, Vázquez, Alexandra, Wollast, Robin, Wai-Lan Yeung, Victoria, Zand, Somayeh
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/659813
Enlace del recurso:http://hdl.handle.net/10757/659813
Nivel de acceso:acceso abierto
Materia:COVID-19
Health behaviors
Machine learning
Public goods dilemma
Random forest
Social norms
id UUPC_f6c86200b41dd7390d66efb3cde683d9
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/659813
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
title Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
spellingShingle Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
van Lissa, Caspar J.
COVID-19
Health behaviors
Machine learning
Public goods dilemma
Random forest
Social norms
title_short Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
title_full Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
title_fullStr Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
title_full_unstemmed Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
title_sort Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
author van Lissa, Caspar J.
author_facet van Lissa, Caspar J.
Stroebe, Wolfgang
vanDellen, Michelle R.
Leander, N. Pontus
Agostini, Maximilian
Draws, Tim
Grygoryshyn, Andrii
Gützgow, Ben
Kreienkamp, Jannis
Vetter, Clara S.
Abakoumkin, Georgios
Abdul Khaiyom, Jamilah Hanum
Ahmedi, Vjolica
Akkas, Handan
Almenara, Carlos A.
Atta, Mohsin
Bagci, Sabahat Cigdem
Basel, Sima
Kida, Edona Berisha
Bernardo, Allan B.I.
Buttrick, Nicholas R.
Chobthamkit, Phatthanakit
Choi, Hoon Seok
Cristea, Mioara
Csaba, Sára
Damnjanović, Kaja
Danyliuk, Ivan
Dash, Arobindu
Di Santo, Daniela
Douglas, Karen M.
Enea, Violeta
Faller, Daiane Gracieli
Fitzsimons, Gavan J.
Gheorghiu, Alexandra
Gómez, Ángel
Hamaidia, Ali
Han, Qing
Helmy, Mai
Hudiyana, Joevarian
Jeronimus, Bertus F.
Jiang, Ding Yu
Jovanović, Veljko
Kamenov, Željka
Kende, Anna
Keng, Shian Ling
Thanh Kieu, Tra Thi
Koc, Yasin
Kovyazina, Kamila
Kozytska, Inna
Krause, Joshua
Kruglanksi, Arie W.
Kurapov, Anton
Kutlaca, Maja
Lantos, Nóra Anna
Lemay, Edward P.
Jaya Lesmana, Cokorda Bagus
Louis, Winnifred R.
Lueders, Adrian
Malik, Najma Iqbal
Martinez, Anton P.
McCabe, Kira O.
Mehulić, Jasmina
Milla, Mirra Noor
Mohammed, Idris
Molinario, Erica
Moyano, Manuel
Muhammad, Hayat
Mula, Silvana
Muluk, Hamdi
Myroniuk, Solomiia
Najafi, Reza
Nisa, Claudia F.
Nyúl, Boglárka
O'Keefe, Paul A.
Olivas Osuna, Jose Javier
Osin, Evgeny N.
Park, Joonha
Pica, Gennaro
Pierro, Antonio
Rees, Jonas H.
Reitsema, Anne Margit
Resta, Elena
Rullo, Marika
Ryan, Michelle K.
Samekin, Adil
Santtila, Pekka
Sasin, Edyta M.
Schumpe, Birga M.
Selim, Heyla A.
Stanton, Michael Vicente
Sultana, Samiah
Sutton, Robbie M.
Tseliou, Eleftheria
Utsugi, Akira
Anne van Breen, Jolien
van Veen, Kees
Vázquez, Alexandra
Wollast, Robin
Wai-Lan Yeung, Victoria
Zand, Somayeh
author_role author
author2 Stroebe, Wolfgang
vanDellen, Michelle R.
Leander, N. Pontus
Agostini, Maximilian
Draws, Tim
Grygoryshyn, Andrii
Gützgow, Ben
Kreienkamp, Jannis
Vetter, Clara S.
Abakoumkin, Georgios
Abdul Khaiyom, Jamilah Hanum
Ahmedi, Vjolica
Akkas, Handan
Almenara, Carlos A.
Atta, Mohsin
Bagci, Sabahat Cigdem
Basel, Sima
Kida, Edona Berisha
Bernardo, Allan B.I.
Buttrick, Nicholas R.
Chobthamkit, Phatthanakit
Choi, Hoon Seok
Cristea, Mioara
Csaba, Sára
Damnjanović, Kaja
Danyliuk, Ivan
Dash, Arobindu
Di Santo, Daniela
Douglas, Karen M.
Enea, Violeta
Faller, Daiane Gracieli
Fitzsimons, Gavan J.
Gheorghiu, Alexandra
Gómez, Ángel
Hamaidia, Ali
Han, Qing
Helmy, Mai
Hudiyana, Joevarian
Jeronimus, Bertus F.
Jiang, Ding Yu
Jovanović, Veljko
Kamenov, Željka
Kende, Anna
Keng, Shian Ling
Thanh Kieu, Tra Thi
Koc, Yasin
Kovyazina, Kamila
Kozytska, Inna
Krause, Joshua
Kruglanksi, Arie W.
Kurapov, Anton
Kutlaca, Maja
Lantos, Nóra Anna
Lemay, Edward P.
Jaya Lesmana, Cokorda Bagus
Louis, Winnifred R.
Lueders, Adrian
Malik, Najma Iqbal
Martinez, Anton P.
McCabe, Kira O.
Mehulić, Jasmina
Milla, Mirra Noor
Mohammed, Idris
Molinario, Erica
Moyano, Manuel
Muhammad, Hayat
Mula, Silvana
Muluk, Hamdi
Myroniuk, Solomiia
Najafi, Reza
Nisa, Claudia F.
Nyúl, Boglárka
O'Keefe, Paul A.
Olivas Osuna, Jose Javier
Osin, Evgeny N.
Park, Joonha
Pica, Gennaro
Pierro, Antonio
Rees, Jonas H.
Reitsema, Anne Margit
Resta, Elena
Rullo, Marika
Ryan, Michelle K.
Samekin, Adil
Santtila, Pekka
Sasin, Edyta M.
Schumpe, Birga M.
Selim, Heyla A.
Stanton, Michael Vicente
Sultana, Samiah
Sutton, Robbie M.
Tseliou, Eleftheria
Utsugi, Akira
Anne van Breen, Jolien
van Veen, Kees
Vázquez, Alexandra
Wollast, Robin
Wai-Lan Yeung, Victoria
Zand, Somayeh
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv van Lissa, Caspar J.
Stroebe, Wolfgang
vanDellen, Michelle R.
Leander, N. Pontus
Agostini, Maximilian
Draws, Tim
Grygoryshyn, Andrii
Gützgow, Ben
Kreienkamp, Jannis
Vetter, Clara S.
Abakoumkin, Georgios
Abdul Khaiyom, Jamilah Hanum
Ahmedi, Vjolica
Akkas, Handan
Almenara, Carlos A.
Atta, Mohsin
Bagci, Sabahat Cigdem
Basel, Sima
Kida, Edona Berisha
Bernardo, Allan B.I.
Buttrick, Nicholas R.
Chobthamkit, Phatthanakit
Choi, Hoon Seok
Cristea, Mioara
Csaba, Sára
Damnjanović, Kaja
Danyliuk, Ivan
Dash, Arobindu
Di Santo, Daniela
Douglas, Karen M.
Enea, Violeta
Faller, Daiane Gracieli
Fitzsimons, Gavan J.
Gheorghiu, Alexandra
Gómez, Ángel
Hamaidia, Ali
Han, Qing
Helmy, Mai
Hudiyana, Joevarian
Jeronimus, Bertus F.
Jiang, Ding Yu
Jovanović, Veljko
Kamenov, Željka
Kende, Anna
Keng, Shian Ling
Thanh Kieu, Tra Thi
Koc, Yasin
Kovyazina, Kamila
Kozytska, Inna
Krause, Joshua
Kruglanksi, Arie W.
Kurapov, Anton
Kutlaca, Maja
Lantos, Nóra Anna
Lemay, Edward P.
Jaya Lesmana, Cokorda Bagus
Louis, Winnifred R.
Lueders, Adrian
Malik, Najma Iqbal
Martinez, Anton P.
McCabe, Kira O.
Mehulić, Jasmina
Milla, Mirra Noor
Mohammed, Idris
Molinario, Erica
Moyano, Manuel
Muhammad, Hayat
Mula, Silvana
Muluk, Hamdi
Myroniuk, Solomiia
Najafi, Reza
Nisa, Claudia F.
Nyúl, Boglárka
O'Keefe, Paul A.
Olivas Osuna, Jose Javier
Osin, Evgeny N.
Park, Joonha
Pica, Gennaro
Pierro, Antonio
Rees, Jonas H.
Reitsema, Anne Margit
Resta, Elena
Rullo, Marika
Ryan, Michelle K.
Samekin, Adil
Santtila, Pekka
Sasin, Edyta M.
Schumpe, Birga M.
Selim, Heyla A.
Stanton, Michael Vicente
Sultana, Samiah
Sutton, Robbie M.
Tseliou, Eleftheria
Utsugi, Akira
Anne van Breen, Jolien
van Veen, Kees
Vázquez, Alexandra
Wollast, Robin
Wai-Lan Yeung, Victoria
Zand, Somayeh
dc.subject.es_PE.fl_str_mv COVID-19
Health behaviors
Machine learning
Public goods dilemma
Random forest
Social norms
topic COVID-19
Health behaviors
Machine learning
Public goods dilemma
Random forest
Social norms
description Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-05-06T15:50:47Z
dc.date.available.none.fl_str_mv 2022-05-06T15:50:47Z
dc.date.issued.fl_str_mv 2022-04-08
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1016/j.patter.2022.100482
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/659813
dc.identifier.eissn.none.fl_str_mv 26663899
dc.identifier.journal.es_PE.fl_str_mv Patterns
dc.identifier.eid.none.fl_str_mv 2-s2.0-85127500709
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85127500709
dc.identifier.pii.none.fl_str_mv S2666389922000678
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.1016/j.patter.2022.100482
26663899
Patterns
2-s2.0-85127500709
SCOPUS_ID:85127500709
S2666389922000678
0000 0001 2196 144X
url http://hdl.handle.net/10757/659813
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.cell.com/patterns/fulltext/S2666-3899(22)00067-8
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Cell Press
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Academico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Patterns
dc.source.volume.none.fl_str_mv 3
dc.source.issue.none.fl_str_mv 4
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/5/10.1016_j.patter.2022.100482.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/4/10.1016_j.patter.2022.100482.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/1/10.1016_j.patter.2022.100482.pdf
bitstream.checksum.fl_str_mv dba8aaa5e9fb08b71db094d8e9d741da
74d16b6dc5e9291d3fdd1baaa9b6481c
8a4605be74aa9ea9d79846c1fba20a33
934f4ca17e109e0a05eaeaba504d7ce4
34dd326546cbe3b5eb1bb6468e1bb7b6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837188465524998144
spelling a68d2e71f920cb1fe07c11a308a561e9500d8a15f07e2a9d522de810eb5800ecad0500696695e4d866d0827a35147c95315547f92a65406937c48a531ffe332a742d135005ea4b83370b105c4c646eba241bb57e65006782efaf10c4724bc5c694765353ea4030015c60d618724971a0a94f6d699fc5f31300072bf27c73bc9e9a53edb5ea9fe283fb300220a7d8045e55150c71b5e7276f35c7d500a66b7a1ee1c3b48f54274605523cadb630052b92e67a57122e50c70c16696d2affe5002faf3da9b6327eaf65d507cffef13b402921f9fa434b7bf700cefde5774abb0a50012de1fd4fb60c442a009fad5a7da62fd5009380f0e4470e7af797885d850ff1a6087910be1b68d082f7a586d6c193ae6de65003fdf6101b4b57262eea0d0f426ec6e96500d068889ca64dc589cfb10882d60c7dd050014356bcd4bc7209c24b68aa6fac10a615009e27686e178759ac24b84bbbd1f4f644500ba43a58c6a5dbe1b318b4ca0e641d2d75007ee61f2c89f22ada112bffeb98c80f45500ef817ea299b6f3e6d60db3db316cab3d500550080b71c6d74a5b0835a81abb9ad12500f883212fd6e49ed5e7698631e9bdd81a50081827d9c72517a6581612630e6d7e4695001747f5229d69d3f49fc16ffb31ab0fca50030068af3618bbb92b353e7965e995bcf500f9730a90b2710b23b20bd48f045fae511612f40aa41fd53acd474a254a8f5b1f5007207b5ed297780287782553281d8bd035008996ca586fda24714dff335b25e5018b500cafd46c3cb901ee4d567c89640ed1e3a5009f79c5458d79258b3d7eed06119091a9500ae7fb9ab5c0462d03c019c04ef6a4fda50068d79c98c32efa3836cb2da11c5df90a500377efc22e2966a36f9b3ca05590d5139500c9255343418d08a76f6a1081092125e150070a01dfe54166bc15479a53fc1239bc85001670de614dcfe8135d8a222688f30c34500d2ae3be1275975839fa891f6912d70615000eebdabd114f3d120e3203a676c52793500221da6d919a684da928946cd32557d395002126a303bb20979527947e86d470916450002b95edea8a2873cc879e7e12ac3dca650068a38fb15652529e183a68b672192792c728d1f761d8f4de51e3af2965eb68275004f332f33c401879eb24087dca950cec75003af8c0e8066df0b2bc6b6d79d640a2d65005516492118c0239e2092996db04feaa15004e41ed7d5dfc741e519a32ce1a6932c4500a656bc1ba5224f7e24fcdef3af1b4776500913a4cd0c7b3dd064564e1f357f6fd6a500ad3e381c14713dfb59131b49843e11fd5009ca15b001c955d7646c7db681e6f562a500219055385c7be73b38507cd2acb4e90dfe072cfd0d480f83d72c1fa17069f652500bc4ab8dbdf0468a98269ed7d9a47b831500b626ff8ec3d210086dddeac1fcc1c13f500523e938702362643ab880849a4fdacdc5007b45224aa5b4c2580f69aa5fec1d252a50067b6b16db3d03efe8da37b7920fb613c500b0bf4ea8c040a9ceb7cff6c3820faa61500d343683b2fe18dadf238dee48adbb6ea50011bc32bfacb7d9b7a66ce596bcb0866c500dd80a12977c9bd18f710531f6f995bc2500fdebd06a0e65ee0633bebaa2de415da25006a3840c63d88503ceaede68a5c4fd919500f00058b45232573e7a6d06df00080ff8500289c50b26d4e2ba516deaca8f91a4e86500d3eee2598fe9eb3c21982c95d74b80a95002a3670b8c7d0e3721336ab691663eb09500bfbb1a6c462f97520565baec0c7c97bc500edfb9d574a6cf82809b451a0b289f14b500e744c3e918af2d8caf27757b27409940644321285b7aaadcc7811c527af617515004661052fcee68ef3be54b37827c96b39500b2620985e87229ce618d9e2c4183b361500a057aa837bc5c9a3d0b6a326c25d9a65500017ee7761fc881952e96576324c5c87f500ed95280f470be2eeafbe9c460c1f67b6500cac79152d8daedcdd7b764416431339d50057b45e91cebcdeea27ec68c13bb7a78a500d1486563463b04ce52228fb8008000a1500562ab51da8eeb5c9e91813ac33c2ec5b50031ae0627ea615334a692c7e3e4734b22500cf198d604de0c22e02d132ef474b034950014d63759a30f9e76f8a8eefc44907cd050026030cd2e1748437fbeb91f5e25a82c65009fe297ed28abb6e9ae6590d4bcc90c05500342a4fd9c65b5bbb5dfb0e22ce582312500336ccac2f88708399f289e687d819d19500cbb0f805da570ce0ae0df1d6e9f6e59550019120b488fb93d91cd5f050af46aedd9500eff1f3d839eece08c3d19246972c0c9b05fe4205735cfaaf95cc000b8b04e1c25006a4a41efe9ce316ec55a1531baee56a1500b8225a19ee6fe8a7d6e40c706153590c50086d310bbce60862f98e5981922823796351e59d53c23c9046a1e3eb604bfdb76500van Lissa, Caspar J.Stroebe, WolfgangvanDellen, Michelle R.Leander, N. PontusAgostini, MaximilianDraws, TimGrygoryshyn, AndriiGützgow, BenKreienkamp, JannisVetter, Clara S.Abakoumkin, GeorgiosAbdul Khaiyom, Jamilah HanumAhmedi, VjolicaAkkas, HandanAlmenara, Carlos A.Atta, MohsinBagci, Sabahat CigdemBasel, SimaKida, Edona BerishaBernardo, Allan B.I.Buttrick, Nicholas R.Chobthamkit, PhatthanakitChoi, Hoon SeokCristea, MioaraCsaba, SáraDamnjanović, KajaDanyliuk, IvanDash, ArobinduDi Santo, DanielaDouglas, Karen M.Enea, VioletaFaller, Daiane GracieliFitzsimons, Gavan J.Gheorghiu, AlexandraGómez, ÁngelHamaidia, AliHan, QingHelmy, MaiHudiyana, JoevarianJeronimus, Bertus F.Jiang, Ding YuJovanović, VeljkoKamenov, ŽeljkaKende, AnnaKeng, Shian LingThanh Kieu, Tra ThiKoc, YasinKovyazina, KamilaKozytska, InnaKrause, JoshuaKruglanksi, Arie W.Kurapov, AntonKutlaca, MajaLantos, Nóra AnnaLemay, Edward P.Jaya Lesmana, Cokorda BagusLouis, Winnifred R.Lueders, AdrianMalik, Najma IqbalMartinez, Anton P.McCabe, Kira O.Mehulić, JasminaMilla, Mirra NoorMohammed, IdrisMolinario, EricaMoyano, ManuelMuhammad, HayatMula, SilvanaMuluk, HamdiMyroniuk, SolomiiaNajafi, RezaNisa, Claudia F.Nyúl, BoglárkaO'Keefe, Paul A.Olivas Osuna, Jose JavierOsin, Evgeny N.Park, JoonhaPica, GennaroPierro, AntonioRees, Jonas H.Reitsema, Anne MargitResta, ElenaRullo, MarikaRyan, Michelle K.Samekin, AdilSanttila, PekkaSasin, Edyta M.Schumpe, Birga M.Selim, Heyla A.Stanton, Michael VicenteSultana, SamiahSutton, Robbie M.Tseliou, EleftheriaUtsugi, AkiraAnne van Breen, Jolienvan Veen, KeesVázquez, AlexandraWollast, RobinWai-Lan Yeung, VictoriaZand, Somayeh2022-05-06T15:50:47Z2022-05-06T15:50:47Z2022-04-0810.1016/j.patter.2022.100482http://hdl.handle.net/10757/65981326663899Patterns2-s2.0-85127500709SCOPUS_ID:85127500709S26663899220006780000 0001 2196 144XBefore vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant.New York University Abu DhabiRevisión por paresapplication/pdfengCell Presshttps://www.cell.com/patterns/fulltext/S2666-3899(22)00067-8info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Universidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCPatterns34reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCCOVID-19Health behaviorsMachine learningPublic goods dilemmaRandom forestSocial normsUsing machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemicinfo:eu-repo/semantics/article2022-05-06T15:50:48ZTHUMBNAIL10.1016_j.patter.2022.100482.pdf.jpg10.1016_j.patter.2022.100482.pdf.jpgGenerated Thumbnailimage/jpeg55200https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/5/10.1016_j.patter.2022.100482.pdf.jpgdba8aaa5e9fb08b71db094d8e9d741daMD55falseTEXT10.1016_j.patter.2022.100482.pdf.txt10.1016_j.patter.2022.100482.pdf.txtExtracted texttext/plain97558https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/4/10.1016_j.patter.2022.100482.pdf.txt74d16b6dc5e9291d3fdd1baaa9b6481cMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL10.1016_j.patter.2022.100482.pdf10.1016_j.patter.2022.100482.pdfapplication/pdf1832949https://repositorioacademico.upc.edu.pe/bitstream/10757/659813/1/10.1016_j.patter.2022.100482.pdf34dd326546cbe3b5eb1bb6468e1bb7b6MD51true10757/659813oai:repositorioacademico.upc.edu.pe:10757/6598132022-05-07 02:54:34.515Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.959421
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).