Web Application for Early Cataract Detection Using a Deep Learning Cloud Service

Descripción del Articulo

Cataracts are a degenerative disease that causes opacity in the crystalline lens. They represent one of the leading causes of blindness worldwide, making early detection crucial to prevent severe damage to patients. Current studies on cataract detection face limitations, particularly due to the high...

Descripción completa

Detalles Bibliográficos
Autores: Galindo-Vilca, Fatima Dayana, Astorayme-Garcia, Fredy Daniel, Aliaga-Cerna, Esther
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676094
Enlace del recurso:http://hdl.handle.net/10757/676094
Nivel de acceso:acceso embargado
Materia:Azure Custom Vision
Cataract
Deep Learning
Fundus image
Web Application
id UUPC_e6cefabc27c3a69e15f3fcdd20a95d91
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676094
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Web Application for Early Cataract Detection Using a Deep Learning Cloud Service
title Web Application for Early Cataract Detection Using a Deep Learning Cloud Service
spellingShingle Web Application for Early Cataract Detection Using a Deep Learning Cloud Service
Galindo-Vilca, Fatima Dayana
Azure Custom Vision
Cataract
Deep Learning
Fundus image
Web Application
title_short Web Application for Early Cataract Detection Using a Deep Learning Cloud Service
title_full Web Application for Early Cataract Detection Using a Deep Learning Cloud Service
title_fullStr Web Application for Early Cataract Detection Using a Deep Learning Cloud Service
title_full_unstemmed Web Application for Early Cataract Detection Using a Deep Learning Cloud Service
title_sort Web Application for Early Cataract Detection Using a Deep Learning Cloud Service
author Galindo-Vilca, Fatima Dayana
author_facet Galindo-Vilca, Fatima Dayana
Astorayme-Garcia, Fredy Daniel
Aliaga-Cerna, Esther
author_role author
author2 Astorayme-Garcia, Fredy Daniel
Aliaga-Cerna, Esther
author2_role author
author
dc.contributor.author.fl_str_mv Galindo-Vilca, Fatima Dayana
Astorayme-Garcia, Fredy Daniel
Aliaga-Cerna, Esther
dc.subject.es_PE.fl_str_mv Azure Custom Vision
Cataract
Deep Learning
Fundus image
Web Application
topic Azure Custom Vision
Cataract
Deep Learning
Fundus image
Web Application
description Cataracts are a degenerative disease that causes opacity in the crystalline lens. They represent one of the leading causes of blindness worldwide, making early detection crucial to prevent severe damage to patients. Current studies on cataract detection face limitations, particularly due to the high cost of imaging devices and their limited accessibility for users. In this study, we propose a web application that utilizes a Deep Learning service to analyze fundus images and provide a cataract diagnosis. This application aims to assist healthcare personnel in medical centers lacking specialist ophthalmologists or facing limited resources for cataract diagnosis. We designed the physical architecture of the application using Azure services, enabling its deployment and operation in the cloud. Azure Custom Vision facilitated the training of our model with a dataset of 1446 fundus images, encompassing both cataract and non-cataract cases. Subsequently, we implemented the web application using React.js and Express.js technologies, integrating the Deep Learning model to perform diagnoses through the web interface. The results demonstrated that the model achieved sensitivity, specificity, precision, and accuracy levels exceeding 90%, showcasing that our proposed tool allows for reliable initial cataract diagnoses in patients without the need for high-cost equipment.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-11T12:31:02Z
dc.date.available.none.fl_str_mv 2024-10-11T12:31:02Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-031-58956-0_4
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676094
dc.identifier.eissn.none.fl_str_mv 18650937
dc.identifier.journal.es_PE.fl_str_mv Communications in Computer and Information Science
dc.identifier.eid.none.fl_str_mv 2-s2.0-85195851684
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85195851684
identifier_str_mv 18650929
10.1007/978-3-031-58956-0_4
18650937
Communications in Computer and Information Science
2-s2.0-85195851684
SCOPUS_ID:85195851684
url http://hdl.handle.net/10757/676094
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Communications in Computer and Information Science
dc.source.volume.none.fl_str_mv 2049 CCIS
dc.source.beginpage.none.fl_str_mv 44
dc.source.endpage.none.fl_str_mv 58
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676094/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187183066218496
spelling c4822099df90c14ee1ca0f393f29ab66300cbaed05a4dea3dd4a955769a29d56dca3005c31e0f7606c0423e827dd1950375d11Galindo-Vilca, Fatima DayanaAstorayme-Garcia, Fredy DanielAliaga-Cerna, Esther2024-10-11T12:31:02Z2024-10-11T12:31:02Z2024-01-011865092910.1007/978-3-031-58956-0_4http://hdl.handle.net/10757/67609418650937Communications in Computer and Information Science2-s2.0-85195851684SCOPUS_ID:85195851684Cataracts are a degenerative disease that causes opacity in the crystalline lens. They represent one of the leading causes of blindness worldwide, making early detection crucial to prevent severe damage to patients. Current studies on cataract detection face limitations, particularly due to the high cost of imaging devices and their limited accessibility for users. In this study, we propose a web application that utilizes a Deep Learning service to analyze fundus images and provide a cataract diagnosis. This application aims to assist healthcare personnel in medical centers lacking specialist ophthalmologists or facing limited resources for cataract diagnosis. We designed the physical architecture of the application using Azure services, enabling its deployment and operation in the cloud. Azure Custom Vision facilitated the training of our model with a dataset of 1446 fundus images, encompassing both cataract and non-cataract cases. Subsequently, we implemented the web application using React.js and Express.js technologies, integrating the Deep Learning model to perform diagnoses through the web interface. The results demonstrated that the model achieved sensitivity, specificity, precision, and accuracy levels exceeding 90%, showcasing that our proposed tool allows for reliable initial cataract diagnoses in patients without the need for high-cost equipment.application/htmlengSpringer Science and Business Media Deutschland GmbHinfo:eu-repo/semantics/embargoedAccessAzure Custom VisionCataractDeep LearningFundus imageWeb ApplicationWeb Application for Early Cataract Detection Using a Deep Learning Cloud Serviceinfo:eu-repo/semantics/articleCommunications in Computer and Information Science2049 CCIS4458reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676094/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676094oai:repositorioacademico.upc.edu.pe:10757/6760942024-10-11 12:31:04.604Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.959421
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).