An SVM-based Intelligible Signal Presence Detection Algorithm for FM Signals Demodulated via SDR
Descripción del Articulo
This work proposes a computational algorithm which monitors voice/audio signals demodulated from a FM receptor and detects whether they are intelligible or not. Data analytics applications which require the continuous storage of radio broadcasted audio signals into a database can benefit from this a...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/660902 |
| Enlace del recurso: | http://hdl.handle.net/10757/660902 |
| Nivel de acceso: | acceso embargado |
| Materia: | Classification Detection FM Intelligible signal MFCC SDR SVM VAD Zero crossing |
| id |
UUPC_915daed18a46517eccbaaf6c3c180c6b |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/660902 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
An SVM-based Intelligible Signal Presence Detection Algorithm for FM Signals Demodulated via SDR |
| title |
An SVM-based Intelligible Signal Presence Detection Algorithm for FM Signals Demodulated via SDR |
| spellingShingle |
An SVM-based Intelligible Signal Presence Detection Algorithm for FM Signals Demodulated via SDR Linares, Arturo Classification Detection FM Intelligible signal MFCC SDR SVM VAD Zero crossing |
| title_short |
An SVM-based Intelligible Signal Presence Detection Algorithm for FM Signals Demodulated via SDR |
| title_full |
An SVM-based Intelligible Signal Presence Detection Algorithm for FM Signals Demodulated via SDR |
| title_fullStr |
An SVM-based Intelligible Signal Presence Detection Algorithm for FM Signals Demodulated via SDR |
| title_full_unstemmed |
An SVM-based Intelligible Signal Presence Detection Algorithm for FM Signals Demodulated via SDR |
| title_sort |
An SVM-based Intelligible Signal Presence Detection Algorithm for FM Signals Demodulated via SDR |
| author |
Linares, Arturo |
| author_facet |
Linares, Arturo Mejia, Bernabe Sanchez, Alonso Kemper, Guillermo |
| author_role |
author |
| author2 |
Mejia, Bernabe Sanchez, Alonso Kemper, Guillermo |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Linares, Arturo Mejia, Bernabe Sanchez, Alonso Kemper, Guillermo |
| dc.subject.es_PE.fl_str_mv |
Classification Detection FM Intelligible signal MFCC SDR SVM VAD Zero crossing |
| topic |
Classification Detection FM Intelligible signal MFCC SDR SVM VAD Zero crossing |
| description |
This work proposes a computational algorithm which monitors voice/audio signals demodulated from a FM receptor and detects whether they are intelligible or not. Data analytics applications which require the continuous storage of radio broadcasted audio signals into a database can benefit from this algorithm. In many instances, the broadcasted signals arrive at the receptor with heavy distortion and noise content, limiting the data analysis due to poor data quality. Moreover, radio spectrum supervisory agencies can also take advantage of this work, since broadcasted signals can be efficiently and continuously monitored to detect whether a broadcaster has stopped transmitting for an extended period. First, the algorithm processes the demodulated signals block by block, extracting its MFCC coefficients, spectral centroid, the arithmetic and geometric means of the frequency magnitude spectrum and the zero-crossing rate in the time domain. Then, these parameters enter a classification algorithm based on three successive support vector machines (SVM), which output one of four possible classes for each block: intelligible clean signal, intelligible noisy signal, unintelligible noisy signal, and noise/silence signal. The algorithm has a 99.85% accuracy for intelligible clean signal versus unintelligible noisy/noise/silence signals; 97.34% accuracy for intelligible noisy signal versus noise/silence signals; and 96.36% accuracy for intelligible voice versus noise/silence. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-09-08T14:10:18Z |
| dc.date.available.none.fl_str_mv |
2022-09-08T14:10:18Z |
| dc.date.issued.fl_str_mv |
2022-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.doi.none.fl_str_mv |
10.1109/ICCCAS55266.2022.9823981 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/660902 |
| dc.identifier.journal.es_PE.fl_str_mv |
11th International Conference on Communications, Circuits and Systems, ICCCAS 2022 |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85135606893 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85135606893 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
10.1109/ICCCAS55266.2022.9823981 11th International Conference on Communications, Circuits and Systems, ICCCAS 2022 2-s2.0-85135606893 SCOPUS_ID:85135606893 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/660902 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.url.es_PE.fl_str_mv |
https://ieeexplore.ieee.org/document/9823981 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
11th International Conference on Communications, Circuits and Systems, ICCCAS 2022 |
| dc.source.beginpage.none.fl_str_mv |
90 |
| dc.source.endpage.none.fl_str_mv |
95 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/660902/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846065824233684992 |
| spelling |
ea0a531356799dd4b0544c3b96136f7e3000e598a3c758be390c1bfd9828d200ae3300f776858fef9eda0f25482ac9d2dd039c81a224b2a512525985a4d85a3aa8658f500Linares, ArturoMejia, BernabeSanchez, AlonsoKemper, Guillermo2022-09-08T14:10:18Z2022-09-08T14:10:18Z2022-01-0110.1109/ICCCAS55266.2022.9823981http://hdl.handle.net/10757/66090211th International Conference on Communications, Circuits and Systems, ICCCAS 20222-s2.0-85135606893SCOPUS_ID:851356068930000 0001 2196 144XThis work proposes a computational algorithm which monitors voice/audio signals demodulated from a FM receptor and detects whether they are intelligible or not. Data analytics applications which require the continuous storage of radio broadcasted audio signals into a database can benefit from this algorithm. In many instances, the broadcasted signals arrive at the receptor with heavy distortion and noise content, limiting the data analysis due to poor data quality. Moreover, radio spectrum supervisory agencies can also take advantage of this work, since broadcasted signals can be efficiently and continuously monitored to detect whether a broadcaster has stopped transmitting for an extended period. First, the algorithm processes the demodulated signals block by block, extracting its MFCC coefficients, spectral centroid, the arithmetic and geometric means of the frequency magnitude spectrum and the zero-crossing rate in the time domain. Then, these parameters enter a classification algorithm based on three successive support vector machines (SVM), which output one of four possible classes for each block: intelligible clean signal, intelligible noisy signal, unintelligible noisy signal, and noise/silence signal. The algorithm has a 99.85% accuracy for intelligible clean signal versus unintelligible noisy/noise/silence signals; 97.34% accuracy for intelligible noisy signal versus noise/silence signals; and 96.36% accuracy for intelligible voice versus noise/silence.application/htmlengInstitute of Electrical and Electronics Engineers Inc.https://ieeexplore.ieee.org/document/9823981info:eu-repo/semantics/embargoedAccessClassificationDetectionFMIntelligible signalMFCCSDRSVMVADZero crossingAn SVM-based Intelligible Signal Presence Detection Algorithm for FM Signals Demodulated via SDRinfo:eu-repo/semantics/article11th International Conference on Communications, Circuits and Systems, ICCCAS 20229095reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/660902/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/660902oai:repositorioacademico.upc.edu.pe:10757/6609022022-09-08 14:10:18.889Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.932913 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).