Recurrent neural networks for deception detection in videos

Descripción del Articulo

Deception detection has always been of subject of interest. After all, determining if a person is telling the truth or not could be detrimental in many real-world cases. Current methods to discern deceptions require expensive equipment that need specialists to read and interpret them. In this articl...

Descripción completa

Detalles Bibliográficos
Autores: Rodriguez-Meza, Bryan, Vargas-Lopez-Lavalle, Renzo, Ugarte, Willy
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/659825
Enlace del recurso:http://hdl.handle.net/10757/659825
Nivel de acceso:acceso embargado
Materia:Deception detection
Deep learning
Facial landmarks recognition
Recurrent neural networks
Video database
id UUPC_8b28e74637911c4ba62a0834acb5b2fc
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/659825
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Recurrent neural networks for deception detection in videos
title Recurrent neural networks for deception detection in videos
spellingShingle Recurrent neural networks for deception detection in videos
Rodriguez-Meza, Bryan
Deception detection
Deep learning
Facial landmarks recognition
Recurrent neural networks
Video database
title_short Recurrent neural networks for deception detection in videos
title_full Recurrent neural networks for deception detection in videos
title_fullStr Recurrent neural networks for deception detection in videos
title_full_unstemmed Recurrent neural networks for deception detection in videos
title_sort Recurrent neural networks for deception detection in videos
author Rodriguez-Meza, Bryan
author_facet Rodriguez-Meza, Bryan
Vargas-Lopez-Lavalle, Renzo
Ugarte, Willy
author_role author
author2 Vargas-Lopez-Lavalle, Renzo
Ugarte, Willy
author2_role author
author
dc.contributor.author.fl_str_mv Rodriguez-Meza, Bryan
Vargas-Lopez-Lavalle, Renzo
Ugarte, Willy
dc.subject.es_PE.fl_str_mv Deception detection
Deep learning
Facial landmarks recognition
Recurrent neural networks
Video database
topic Deception detection
Deep learning
Facial landmarks recognition
Recurrent neural networks
Video database
description Deception detection has always been of subject of interest. After all, determining if a person is telling the truth or not could be detrimental in many real-world cases. Current methods to discern deceptions require expensive equipment that need specialists to read and interpret them. In this article, we carry out an exhaustive comparison between 9 different facial landmark recognition based recurrent deep learning models trained on a recent man-made database used to determine lies, comparing them by accuracy and AUC. We also propose two new metrics that represent the validity of each prediction. The results of a 5-fold cross validation show that out of all the tested models, the Stacked GRU neural model has the highest AUC of.9853 and the highest accuracy of 93.69% between the trained models. Then, a comparison is done between other machine and deep learning methods and our proposed Stacked GRU architecture where the latter surpasses them in the AUC metric. These results indicate that we are not that far away from a future where deception detection could be accessible throughout computers or smart devices.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-05-06T17:48:32Z
dc.date.available.none.fl_str_mv 2022-05-06T17:48:32Z
dc.date.issued.fl_str_mv 2022-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-031-03884-6_29
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/659825
dc.identifier.eissn.none.fl_str_mv 18650937
dc.identifier.journal.es_PE.fl_str_mv Communications in Computer and Information Science
dc.identifier.eid.none.fl_str_mv 2-s2.0-85128491751
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85128491751
identifier_str_mv 18650929
10.1007/978-3-031-03884-6_29
18650937
Communications in Computer and Information Science
2-s2.0-85128491751
SCOPUS_ID:85128491751
url http://hdl.handle.net/10757/659825
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-031-03884-6_29
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Communications in Computer and Information Science
dc.source.volume.none.fl_str_mv 1535 CCIS
dc.source.beginpage.none.fl_str_mv 397
dc.source.endpage.none.fl_str_mv 411
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/659825/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837188466831523840
spelling 7f080a04dbb03c73e38b9ff1a0b1ead8461ff08118f99169248daa326bf95342533fd7e68213307170565ef90452257aRodriguez-Meza, BryanVargas-Lopez-Lavalle, RenzoUgarte, Willy2022-05-06T17:48:32Z2022-05-06T17:48:32Z2022-01-011865092910.1007/978-3-031-03884-6_29http://hdl.handle.net/10757/65982518650937Communications in Computer and Information Science2-s2.0-85128491751SCOPUS_ID:85128491751Deception detection has always been of subject of interest. After all, determining if a person is telling the truth or not could be detrimental in many real-world cases. Current methods to discern deceptions require expensive equipment that need specialists to read and interpret them. In this article, we carry out an exhaustive comparison between 9 different facial landmark recognition based recurrent deep learning models trained on a recent man-made database used to determine lies, comparing them by accuracy and AUC. We also propose two new metrics that represent the validity of each prediction. The results of a 5-fold cross validation show that out of all the tested models, the Stacked GRU neural model has the highest AUC of.9853 and the highest accuracy of 93.69% between the trained models. Then, a comparison is done between other machine and deep learning methods and our proposed Stacked GRU architecture where the latter surpasses them in the AUC metric. These results indicate that we are not that far away from a future where deception detection could be accessible throughout computers or smart devices.Revisión por paresapplication/htmlengSpringer Science and Business Media Deutschland GmbHhttps://link.springer.com/chapter/10.1007/978-3-031-03884-6_29info:eu-repo/semantics/embargoedAccessDeception detectionDeep learningFacial landmarks recognitionRecurrent neural networksVideo databaseRecurrent neural networks for deception detection in videosinfo:eu-repo/semantics/articleCommunications in Computer and Information Science1535 CCIS397411reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/659825/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/659825oai:repositorioacademico.upc.edu.pe:10757/6598252022-05-06 17:48:33.363Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.949868
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).