Temporary Variables for Predicting Electricity Consumption Through Data Mining

Descripción del Articulo

In the new global and local scenario, the advent of intelligent distribution networks or Smart Grids allows real-time collection of data on the operating status of the electricity grid. Based on this availability of data, it is feasible and convenient to predict consumption in the short term, from a...

Descripción completa

Detalles Bibliográficos
Autores: Silva, Jesús, Senior Naveda, Alexa, Hernández Palma, Hugo, Niebles Núẽz, William, Niebles Núẽz, Leonardo
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/652132
Enlace del recurso:http://hdl.handle.net/10757/652132
Nivel de acceso:acceso abierto
Materia:Data mining
Electric power transmission networks
Electric power utilization
Forecasting
Electricity grids
Electricity-consumption
Intelligent distribution networks
Prediction systems
Real-time collection
Short term
Smart grid
Time variable
id UUPC_7ffead4fedf9c623d87e4a5ddd0590cf
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/652132
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.en_US.fl_str_mv Temporary Variables for Predicting Electricity Consumption Through Data Mining
title Temporary Variables for Predicting Electricity Consumption Through Data Mining
spellingShingle Temporary Variables for Predicting Electricity Consumption Through Data Mining
Silva, Jesús
Data mining
Electric power transmission networks
Electric power utilization
Forecasting
Electricity grids
Electricity-consumption
Intelligent distribution networks
Prediction systems
Real-time collection
Short term
Smart grid
Time variable
title_short Temporary Variables for Predicting Electricity Consumption Through Data Mining
title_full Temporary Variables for Predicting Electricity Consumption Through Data Mining
title_fullStr Temporary Variables for Predicting Electricity Consumption Through Data Mining
title_full_unstemmed Temporary Variables for Predicting Electricity Consumption Through Data Mining
title_sort Temporary Variables for Predicting Electricity Consumption Through Data Mining
author Silva, Jesús
author_facet Silva, Jesús
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Núẽz, William
Niebles Núẽz, Leonardo
author_role author
author2 Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Núẽz, William
Niebles Núẽz, Leonardo
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Silva, Jesús
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Núẽz, William
Niebles Núẽz, Leonardo
dc.subject.en_US.fl_str_mv Data mining
Electric power transmission networks
Electric power utilization
Forecasting
Electricity grids
Electricity-consumption
Intelligent distribution networks
Prediction systems
Real-time collection
Short term
Smart grid
Time variable
topic Data mining
Electric power transmission networks
Electric power utilization
Forecasting
Electricity grids
Electricity-consumption
Intelligent distribution networks
Prediction systems
Real-time collection
Short term
Smart grid
Time variable
description In the new global and local scenario, the advent of intelligent distribution networks or Smart Grids allows real-time collection of data on the operating status of the electricity grid. Based on this availability of data, it is feasible and convenient to predict consumption in the short term, from a few hours to a week. The hypothesis of the study is that the method used to present time variables to a prediction system of electricity consumption affects the results.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-06-30T21:57:26Z
dc.date.available.none.fl_str_mv 2020-06-30T21:57:26Z
dc.date.issued.fl_str_mv 2020-01-07
dc.type.en_US.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1432/1/012033
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/652132
dc.identifier.eissn.none.fl_str_mv 17426596
dc.identifier.journal.en_US.fl_str_mv Journal of Physics: Conference Series
dc.identifier.eid.none.fl_str_mv 2-s2.0-85079101136
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85079101136
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 17426588
10.1088/1742-6596/1432/1/012033
17426596
Journal of Physics: Conference Series
2-s2.0-85079101136
SCOPUS_ID:85079101136
0000 0001 2196 144X
url http://hdl.handle.net/10757/652132
dc.language.iso.en_US.fl_str_mv eng
language eng
dc.rights.en_US.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.en_US.fl_str_mv application/pdf
dc.publisher.en_US.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Journal of Physics: Conference Series
dc.source.volume.none.fl_str_mv 1432
dc.source.issue.none.fl_str_mv 1
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/652132/5/10.10881742-659614321012033.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/652132/4/10.10881742-659614321012033.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/652132/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/652132/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/652132/1/10.10881742-659614321012033.pdf
bitstream.checksum.fl_str_mv bdda3623a7e4c6ca2f5bcb213a7b3e70
4e0964d05f978e7f2eda02ba9839468e
8a4605be74aa9ea9d79846c1fba20a33
934f4ca17e109e0a05eaeaba504d7ce4
f47c68ea9e817e29394edf1368de8c53
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837188243345375232
spelling 4dc0aefbea6d494fa03e7acf0e5b06995007679b990a63b8feb6a3c46bff723382030070c0843e406fa4d4e04ee178a790e187500b547fd60ecb3cb34e467d8346b3bdb0450036c2d9cc006e77172bd570cdb031ea74300Silva, JesúsSenior Naveda, AlexaHernández Palma, HugoNiebles Núẽz, WilliamNiebles Núẽz, Leonardo2020-06-30T21:57:26Z2020-06-30T21:57:26Z2020-01-071742658810.1088/1742-6596/1432/1/012033http://hdl.handle.net/10757/65213217426596Journal of Physics: Conference Series2-s2.0-85079101136SCOPUS_ID:850791011360000 0001 2196 144XIn the new global and local scenario, the advent of intelligent distribution networks or Smart Grids allows real-time collection of data on the operating status of the electricity grid. Based on this availability of data, it is feasible and convenient to predict consumption in the short term, from a few hours to a week. The hypothesis of the study is that the method used to present time variables to a prediction system of electricity consumption affects the results.application/pdfengInstitute of Physics Publishinginfo:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Data miningElectric power transmission networksElectric power utilizationForecastingElectricity gridsElectricity-consumptionIntelligent distribution networksPrediction systemsReal-time collectionShort termSmart gridTime variableTemporary Variables for Predicting Electricity Consumption Through Data Mininginfo:eu-repo/semantics/articleJournal of Physics: Conference Series14321reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2020-06-30T21:57:28ZTHUMBNAIL10.10881742-659614321012033.pdf.jpg10.10881742-659614321012033.pdf.jpgGenerated Thumbnailimage/jpeg55577https://repositorioacademico.upc.edu.pe/bitstream/10757/652132/5/10.10881742-659614321012033.pdf.jpgbdda3623a7e4c6ca2f5bcb213a7b3e70MD55falseTEXT10.10881742-659614321012033.pdf.txt10.10881742-659614321012033.pdf.txtExtracted texttext/plain22327https://repositorioacademico.upc.edu.pe/bitstream/10757/652132/4/10.10881742-659614321012033.pdf.txt4e0964d05f978e7f2eda02ba9839468eMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/652132/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/652132/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL10.10881742-659614321012033.pdf10.10881742-659614321012033.pdfapplication/pdf815631https://repositorioacademico.upc.edu.pe/bitstream/10757/652132/1/10.10881742-659614321012033.pdff47c68ea9e817e29394edf1368de8c53MD51true10757/652132oai:repositorioacademico.upc.edu.pe:10757/6521322020-07-01 03:21:37.609Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).