An automatic system for defect detection in plastic crates for glass bottles.

Descripción del Articulo

The project describes the design and implementation of an automatic system for detecting defects in plastic crates for glass bottles. In all companies there is damage and defects in their cases, crates, or containers due to constant use, as they are reusable, and therefore this problem causes variou...

Descripción completa

Detalles Bibliográficos
Autores: Juarez, Matthews, Cruz, Anderson De La, Vinces, Leonardo, Vargas, Dante
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/673077
Enlace del recurso:http://hdl.handle.net/10757/673077
Nivel de acceso:acceso embargado
Materia:Automated system
Image processing
Inspection
OpenCV
Python
Raspberry pi
TensorFlow
id UUPC_6aff2c5a6a5ac28e1852f2d1ef0dada5
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/673077
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv An automatic system for defect detection in plastic crates for glass bottles.
title An automatic system for defect detection in plastic crates for glass bottles.
spellingShingle An automatic system for defect detection in plastic crates for glass bottles.
Juarez, Matthews
Automated system
Image processing
Inspection
OpenCV
Python
Raspberry pi
TensorFlow
title_short An automatic system for defect detection in plastic crates for glass bottles.
title_full An automatic system for defect detection in plastic crates for glass bottles.
title_fullStr An automatic system for defect detection in plastic crates for glass bottles.
title_full_unstemmed An automatic system for defect detection in plastic crates for glass bottles.
title_sort An automatic system for defect detection in plastic crates for glass bottles.
author Juarez, Matthews
author_facet Juarez, Matthews
Cruz, Anderson De La
Vinces, Leonardo
Vargas, Dante
author_role author
author2 Cruz, Anderson De La
Vinces, Leonardo
Vargas, Dante
author2_role author
author
author
dc.contributor.author.fl_str_mv Juarez, Matthews
Cruz, Anderson De La
Vinces, Leonardo
Vargas, Dante
dc.subject.es_PE.fl_str_mv Automated system
Image processing
Inspection
OpenCV
Python
Raspberry pi
TensorFlow
topic Automated system
Image processing
Inspection
OpenCV
Python
Raspberry pi
TensorFlow
description The project describes the design and implementation of an automatic system for detecting defects in plastic crates for glass bottles. In all companies there is damage and defects in their cases, crates, or containers due to constant use, as they are reusable, and therefore this problem causes various economic losses and a decrease in production, especially in beverage companies. This system was designed to solve and prevent the crates from having defects in their base and containing waste inside, to obtain less product losses in the bottle packaging area. In this research, it is proposed to design the automatic system, which consists of training a convolutional neural network with a database of 136 photographs of waste and defects in the boxes that will be taken by the HQ Raspberry Camera; then programmed into the Raspberry the process of activating the engine so that the box is moved to the point where it will be detected by the photoelectric sensor and the inspection is performed; and finally it is classified indicating whether or not it is in optimal conditions. This is developed in Python using different libraries such as OpenCV, TensorFlow, Tkinter among others. Our results show that the classification and object detection accuracy reached 91.84% out of a bank of 264 tests performed.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-03-16T23:27:38Z
dc.date.available.none.fl_str_mv 2024-03-16T23:27:38Z
dc.date.issued.fl_str_mv 2023-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1109/CONIITI61170.2023.10324142
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/673077
dc.identifier.journal.es_PE.fl_str_mv 2023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedings
dc.identifier.eid.none.fl_str_mv 2-s2.0-85179546457
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85179546457
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.1109/CONIITI61170.2023.10324142
2023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedings
2-s2.0-85179546457
SCOPUS_ID:85179546457
0000 0001 2196 144X
url http://hdl.handle.net/10757/673077
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Academico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv 2023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedings
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/673077/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837186888457256960
spelling 53f11b976b66a8a3158610fdfd8e6c2b300a71ee94de7f961cc4b9a13b85c7508f730060e18754863e92f130edcf7adad97c84500ebde67d9e2f81e7a7f94be8d7c617c7f500Juarez, MatthewsCruz, Anderson De LaVinces, LeonardoVargas, Dante2024-03-16T23:27:38Z2024-03-16T23:27:38Z2023-01-0110.1109/CONIITI61170.2023.10324142http://hdl.handle.net/10757/6730772023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedings2-s2.0-85179546457SCOPUS_ID:851795464570000 0001 2196 144XThe project describes the design and implementation of an automatic system for detecting defects in plastic crates for glass bottles. In all companies there is damage and defects in their cases, crates, or containers due to constant use, as they are reusable, and therefore this problem causes various economic losses and a decrease in production, especially in beverage companies. This system was designed to solve and prevent the crates from having defects in their base and containing waste inside, to obtain less product losses in the bottle packaging area. In this research, it is proposed to design the automatic system, which consists of training a convolutional neural network with a database of 136 photographs of waste and defects in the boxes that will be taken by the HQ Raspberry Camera; then programmed into the Raspberry the process of activating the engine so that the box is moved to the point where it will be detected by the photoelectric sensor and the inspection is performed; and finally it is classified indicating whether or not it is in optimal conditions. This is developed in Python using different libraries such as OpenCV, TensorFlow, Tkinter among others. Our results show that the classification and object detection accuracy reached 91.84% out of a bank of 264 tests performed.ODS 9: Industria, Innovación e InfraestructuraODS 12: Producción y Consumo ResponsablesODS 8: Trabajo Decente y Crecimiento Económicoapplication/htmlengInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPC2023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedingsreponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCAutomated systemImage processingInspectionOpenCVPythonRaspberry piTensorFlowAn automatic system for defect detection in plastic crates for glass bottles.info:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/673077/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/673077oai:repositorioacademico.upc.edu.pe:10757/6730772024-07-20 10:32:19.142Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.940932
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).