Collaborative model to reduce stock breaks in the peruvian retail sector by applying the s&op methodology

Descripción del Articulo

El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.
Detalles Bibliográficos
Autores: Paredes-Torres, Franco, Almeyda-Crisostomo, Genesis, Viacava-Campos, Gino, Aderhold, Daniel
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/656030
Enlace del recurso:http://hdl.handle.net/10757/656030
Nivel de acceso:acceso embargado
Materia:Forecast
Inventories
Processes
Retail
S&OP
id UUPC_6796e1858079e459b7fd32aa89f3df4a
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/656030
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.en_US.fl_str_mv Collaborative model to reduce stock breaks in the peruvian retail sector by applying the s&op methodology
title Collaborative model to reduce stock breaks in the peruvian retail sector by applying the s&op methodology
spellingShingle Collaborative model to reduce stock breaks in the peruvian retail sector by applying the s&op methodology
Paredes-Torres, Franco
Forecast
Inventories
Processes
Retail
S&OP
title_short Collaborative model to reduce stock breaks in the peruvian retail sector by applying the s&op methodology
title_full Collaborative model to reduce stock breaks in the peruvian retail sector by applying the s&op methodology
title_fullStr Collaborative model to reduce stock breaks in the peruvian retail sector by applying the s&op methodology
title_full_unstemmed Collaborative model to reduce stock breaks in the peruvian retail sector by applying the s&op methodology
title_sort Collaborative model to reduce stock breaks in the peruvian retail sector by applying the s&op methodology
author Paredes-Torres, Franco
author_facet Paredes-Torres, Franco
Almeyda-Crisostomo, Genesis
Viacava-Campos, Gino
Aderhold, Daniel
author_role author
author2 Almeyda-Crisostomo, Genesis
Viacava-Campos, Gino
Aderhold, Daniel
author2_role author
author
author
dc.contributor.author.fl_str_mv Paredes-Torres, Franco
Almeyda-Crisostomo, Genesis
Viacava-Campos, Gino
Aderhold, Daniel
dc.subject.en_US.fl_str_mv Forecast
Inventories
Processes
Retail
S&OP
topic Forecast
Inventories
Processes
Retail
S&OP
description El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-18T12:21:13Z
dc.date.available.none.fl_str_mv 2021-05-18T12:21:13Z
dc.date.issued.fl_str_mv 2021-01-01
dc.type.en_US.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 21945357
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-55307-4_81
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/656030
dc.identifier.eissn.none.fl_str_mv 21945365
dc.identifier.journal.en_US.fl_str_mv Advances in Intelligent Systems and Computing
dc.identifier.eid.none.fl_str_mv 2-s2.0-85089621625
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85089621625
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 21945357
10.1007/978-3-030-55307-4_81
21945365
Advances in Intelligent Systems and Computing
2-s2.0-85089621625
SCOPUS_ID:85089621625
0000 0001 2196 144X
url http://hdl.handle.net/10757/656030
dc.language.iso.en_US.fl_str_mv eng
language eng
dc.relation.url.en_US.fl_str_mv https://www.springerprofessional.de/en/collaborative-model-to-reduce-stock-breaks-in-the-peruvian-retai/18251804
dc.rights.en_US.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.en_US.fl_str_mv application/html
dc.publisher.en_US.fl_str_mv Springer
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Académico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Advances in Intelligent Systems and Computing
dc.source.volume.none.fl_str_mv 1253 AISC
dc.source.beginpage.none.fl_str_mv 532
dc.source.endpage.none.fl_str_mv 538
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/656030/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837188353260257280
spelling 6ca9d5ebf0085e76a39de6cb7bc15f3a9c68d231b6c56ab5ca9710415a39f55f3008a114454bd5c59de2bf60cef95715612d798007859f7b00925e1c5c5842c2167500Paredes-Torres, FrancoAlmeyda-Crisostomo, GenesisViacava-Campos, GinoAderhold, Daniel2021-05-18T12:21:13Z2021-05-18T12:21:13Z2021-01-012194535710.1007/978-3-030-55307-4_81http://hdl.handle.net/10757/65603021945365Advances in Intelligent Systems and Computing2-s2.0-85089621625SCOPUS_ID:850896216250000 0001 2196 144XEl texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.The retail sector is a growing industry, however with serious problems associated with inventories such as stock breakage. This article proposes a collaborative model applying the S&OP methodology to reduce stock breakages in a Peruvian company in the retail sector through a purchasing plan designed by the interaction and participation of different actors in charge of the process. The results of the model are measured by the percentage of stock breaks, the demand forecast error and the increase in sales. In the diagnosis of the problem two factors were identified that cause the stock breaks. The first is caused by the delay that exists in the replenishment of inventories, due to the bad programming of delivery of products between the distribution center and the stores. The second is related to the insufficient amount of purchases caused by not properly categorizing the products, poor forecast and not having safety inventory policies. A simulation resulted in a 17% stock breakage reduction, a 17% forecast error decrease, and a 15% sales increase.application/htmlengSpringerhttps://www.springerprofessional.de/en/collaborative-model-to-reduce-stock-breaks-in-the-peruvian-retai/18251804info:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Académico - UPCAdvances in Intelligent Systems and Computing1253 AISC532538reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCForecastInventoriesProcessesRetailS&OPCollaborative model to reduce stock breaks in the peruvian retail sector by applying the s&op methodologyinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/656030/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/656030oai:repositorioacademico.upc.edu.pe:10757/6560302021-05-18 12:40:15.809Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.971837
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).