Mobile Application for Calorie Control Using Machine Learning

Descripción del Articulo

Overweight is a serious problem in Peru, and compliance with a healthy and balanced diet is essential for its management. Despite the existence of different types of diets and meal plans, people still find it difficult to comply with the treatment. Also, lack of access to adequate nutritional inform...

Descripción completa

Detalles Bibliográficos
Autores: Huamani-Tito, Kelly Rocio, Huaman-La Cruz, Gerardo Francisco, Herrera-Trujillo, Emilio Antonio
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676093
Enlace del recurso:http://hdl.handle.net/10757/676093
Nivel de acceso:acceso embargado
Materia:Excess weight
Food recommendation
Mobile solution
Support vector machine
id UUPC_546428d4eb8457656b6b515ebba1815e
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676093
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Mobile Application for Calorie Control Using Machine Learning
title Mobile Application for Calorie Control Using Machine Learning
spellingShingle Mobile Application for Calorie Control Using Machine Learning
Huamani-Tito, Kelly Rocio
Excess weight
Food recommendation
Mobile solution
Support vector machine
title_short Mobile Application for Calorie Control Using Machine Learning
title_full Mobile Application for Calorie Control Using Machine Learning
title_fullStr Mobile Application for Calorie Control Using Machine Learning
title_full_unstemmed Mobile Application for Calorie Control Using Machine Learning
title_sort Mobile Application for Calorie Control Using Machine Learning
author Huamani-Tito, Kelly Rocio
author_facet Huamani-Tito, Kelly Rocio
Huaman-La Cruz, Gerardo Francisco
Herrera-Trujillo, Emilio Antonio
author_role author
author2 Huaman-La Cruz, Gerardo Francisco
Herrera-Trujillo, Emilio Antonio
author2_role author
author
dc.contributor.author.fl_str_mv Huamani-Tito, Kelly Rocio
Huaman-La Cruz, Gerardo Francisco
Herrera-Trujillo, Emilio Antonio
dc.subject.es_PE.fl_str_mv Excess weight
Food recommendation
Mobile solution
Support vector machine
topic Excess weight
Food recommendation
Mobile solution
Support vector machine
description Overweight is a serious problem in Peru, and compliance with a healthy and balanced diet is essential for its management. Despite the existence of different types of diets and meal plans, people still find it difficult to comply with the treatment. Also, lack of access to adequate nutritional information and lack of follow-up in implementing a low-calorie diet can demotivate people and reduce the effectiveness of the process. To reduce this problem, a mobile application is presented that allows the control of the caloric intake of food, based on food suggestions using Machine Learning. For this purpose, the Support Vector Machine algorithm is applied to train a model that recommends personalized food to users according to their preferences. This is how the application allows users to easily access personalized food recommendations by analyzing their preferences and caloric needs individually. As a result, it has achieved a Percentage of Caloric Recommendation Satisfaction of 90.5%, a Percentage of Accepted Recommendations of 94.2%, and a Percentage of Usage Satisfaction of 92.6%. These results support its effectiveness and ease of use. It is expected that this proposal will have a positive impact on the fight against overweight in Peru.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-11T12:29:07Z
dc.date.available.none.fl_str_mv 2024-10-11T12:29:07Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-031-58956-0_1
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676093
dc.identifier.eissn.none.fl_str_mv 18650937
dc.identifier.journal.es_PE.fl_str_mv Communications in Computer and Information Science
dc.identifier.eid.none.fl_str_mv 2-s2.0-85195874767
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85195874767
identifier_str_mv 18650929
10.1007/978-3-031-58956-0_1
18650937
Communications in Computer and Information Science
2-s2.0-85195874767
SCOPUS_ID:85195874767
url http://hdl.handle.net/10757/676093
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Communications in Computer and Information Science
dc.source.volume.none.fl_str_mv 2049 CCIS
dc.source.beginpage.none.fl_str_mv 3
dc.source.endpage.none.fl_str_mv 16
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676093/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846066053319229440
spelling 6392d57c7591794de67acf429da6a3f2300c5d9dc20716af0b952a9295ea78977d6300efcefc216e013170f402a87594b398aeHuamani-Tito, Kelly RocioHuaman-La Cruz, Gerardo FranciscoHerrera-Trujillo, Emilio Antonio2024-10-11T12:29:07Z2024-10-11T12:29:07Z2024-01-011865092910.1007/978-3-031-58956-0_1http://hdl.handle.net/10757/67609318650937Communications in Computer and Information Science2-s2.0-85195874767SCOPUS_ID:85195874767Overweight is a serious problem in Peru, and compliance with a healthy and balanced diet is essential for its management. Despite the existence of different types of diets and meal plans, people still find it difficult to comply with the treatment. Also, lack of access to adequate nutritional information and lack of follow-up in implementing a low-calorie diet can demotivate people and reduce the effectiveness of the process. To reduce this problem, a mobile application is presented that allows the control of the caloric intake of food, based on food suggestions using Machine Learning. For this purpose, the Support Vector Machine algorithm is applied to train a model that recommends personalized food to users according to their preferences. This is how the application allows users to easily access personalized food recommendations by analyzing their preferences and caloric needs individually. As a result, it has achieved a Percentage of Caloric Recommendation Satisfaction of 90.5%, a Percentage of Accepted Recommendations of 94.2%, and a Percentage of Usage Satisfaction of 92.6%. These results support its effectiveness and ease of use. It is expected that this proposal will have a positive impact on the fight against overweight in Peru.application/htmlengSpringer Science and Business Media Deutschland GmbHinfo:eu-repo/semantics/embargoedAccessExcess weightFood recommendationMobile solutionSupport vector machineMobile Application for Calorie Control Using Machine Learninginfo:eu-repo/semantics/articleCommunications in Computer and Information Science2049 CCIS316reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676093/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676093oai:repositorioacademico.upc.edu.pe:10757/6760932024-10-11 12:29:08.869Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.945474
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).