Mobile Application for Calorie Control Using Machine Learning
Descripción del Articulo
Overweight is a serious problem in Peru, and compliance with a healthy and balanced diet is essential for its management. Despite the existence of different types of diets and meal plans, people still find it difficult to comply with the treatment. Also, lack of access to adequate nutritional inform...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676093 |
| Enlace del recurso: | http://hdl.handle.net/10757/676093 |
| Nivel de acceso: | acceso embargado |
| Materia: | Excess weight Food recommendation Mobile solution Support vector machine |
| id |
UUPC_546428d4eb8457656b6b515ebba1815e |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676093 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
Mobile Application for Calorie Control Using Machine Learning |
| title |
Mobile Application for Calorie Control Using Machine Learning |
| spellingShingle |
Mobile Application for Calorie Control Using Machine Learning Huamani-Tito, Kelly Rocio Excess weight Food recommendation Mobile solution Support vector machine |
| title_short |
Mobile Application for Calorie Control Using Machine Learning |
| title_full |
Mobile Application for Calorie Control Using Machine Learning |
| title_fullStr |
Mobile Application for Calorie Control Using Machine Learning |
| title_full_unstemmed |
Mobile Application for Calorie Control Using Machine Learning |
| title_sort |
Mobile Application for Calorie Control Using Machine Learning |
| author |
Huamani-Tito, Kelly Rocio |
| author_facet |
Huamani-Tito, Kelly Rocio Huaman-La Cruz, Gerardo Francisco Herrera-Trujillo, Emilio Antonio |
| author_role |
author |
| author2 |
Huaman-La Cruz, Gerardo Francisco Herrera-Trujillo, Emilio Antonio |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Huamani-Tito, Kelly Rocio Huaman-La Cruz, Gerardo Francisco Herrera-Trujillo, Emilio Antonio |
| dc.subject.es_PE.fl_str_mv |
Excess weight Food recommendation Mobile solution Support vector machine |
| topic |
Excess weight Food recommendation Mobile solution Support vector machine |
| description |
Overweight is a serious problem in Peru, and compliance with a healthy and balanced diet is essential for its management. Despite the existence of different types of diets and meal plans, people still find it difficult to comply with the treatment. Also, lack of access to adequate nutritional information and lack of follow-up in implementing a low-calorie diet can demotivate people and reduce the effectiveness of the process. To reduce this problem, a mobile application is presented that allows the control of the caloric intake of food, based on food suggestions using Machine Learning. For this purpose, the Support Vector Machine algorithm is applied to train a model that recommends personalized food to users according to their preferences. This is how the application allows users to easily access personalized food recommendations by analyzing their preferences and caloric needs individually. As a result, it has achieved a Percentage of Caloric Recommendation Satisfaction of 90.5%, a Percentage of Accepted Recommendations of 94.2%, and a Percentage of Usage Satisfaction of 92.6%. These results support its effectiveness and ease of use. It is expected that this proposal will have a positive impact on the fight against overweight in Peru. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-10-11T12:29:07Z |
| dc.date.available.none.fl_str_mv |
2024-10-11T12:29:07Z |
| dc.date.issued.fl_str_mv |
2024-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
18650929 |
| dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-031-58956-0_1 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676093 |
| dc.identifier.eissn.none.fl_str_mv |
18650937 |
| dc.identifier.journal.es_PE.fl_str_mv |
Communications in Computer and Information Science |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85195874767 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85195874767 |
| identifier_str_mv |
18650929 10.1007/978-3-031-58956-0_1 18650937 Communications in Computer and Information Science 2-s2.0-85195874767 SCOPUS_ID:85195874767 |
| url |
http://hdl.handle.net/10757/676093 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
Communications in Computer and Information Science |
| dc.source.volume.none.fl_str_mv |
2049 CCIS |
| dc.source.beginpage.none.fl_str_mv |
3 |
| dc.source.endpage.none.fl_str_mv |
16 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676093/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846066053319229440 |
| spelling |
6392d57c7591794de67acf429da6a3f2300c5d9dc20716af0b952a9295ea78977d6300efcefc216e013170f402a87594b398aeHuamani-Tito, Kelly RocioHuaman-La Cruz, Gerardo FranciscoHerrera-Trujillo, Emilio Antonio2024-10-11T12:29:07Z2024-10-11T12:29:07Z2024-01-011865092910.1007/978-3-031-58956-0_1http://hdl.handle.net/10757/67609318650937Communications in Computer and Information Science2-s2.0-85195874767SCOPUS_ID:85195874767Overweight is a serious problem in Peru, and compliance with a healthy and balanced diet is essential for its management. Despite the existence of different types of diets and meal plans, people still find it difficult to comply with the treatment. Also, lack of access to adequate nutritional information and lack of follow-up in implementing a low-calorie diet can demotivate people and reduce the effectiveness of the process. To reduce this problem, a mobile application is presented that allows the control of the caloric intake of food, based on food suggestions using Machine Learning. For this purpose, the Support Vector Machine algorithm is applied to train a model that recommends personalized food to users according to their preferences. This is how the application allows users to easily access personalized food recommendations by analyzing their preferences and caloric needs individually. As a result, it has achieved a Percentage of Caloric Recommendation Satisfaction of 90.5%, a Percentage of Accepted Recommendations of 94.2%, and a Percentage of Usage Satisfaction of 92.6%. These results support its effectiveness and ease of use. It is expected that this proposal will have a positive impact on the fight against overweight in Peru.application/htmlengSpringer Science and Business Media Deutschland GmbHinfo:eu-repo/semantics/embargoedAccessExcess weightFood recommendationMobile solutionSupport vector machineMobile Application for Calorie Control Using Machine Learninginfo:eu-repo/semantics/articleCommunications in Computer and Information Science2049 CCIS316reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676093/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676093oai:repositorioacademico.upc.edu.pe:10757/6760932024-10-11 12:29:08.869Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.945474 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).