Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector

Descripción del Articulo

In the sustainable tourist sector today, there is a wide margin of loss in small and medium-sized enterprise (SMEs) because of a poor control in logistical expenses. In other words, acquired goods are note being sold, a scenario which is very common in tourism SMEs. These SMEs buy a number of travel...

Descripción completa

Detalles Bibliográficos
Autores: Zapata, Gianpierre, Murga, Javier, Raymundo, Carlos, Alvarez, Jose, Dominguez, Francisco
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/656350
Enlace del recurso:http://hdl.handle.net/10757/656350
Nivel de acceso:acceso abierto
Materia:Big data
Cloud computing
Sentiment analysis
Tourism sector
Travel management process
id UUPC_53e46db645fb8d91103f8cd35d3014f6
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/656350
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.en_US.fl_str_mv Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector
title Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector
spellingShingle Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector
Zapata, Gianpierre
Big data
Cloud computing
Sentiment analysis
Tourism sector
Travel management process
title_short Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector
title_full Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector
title_fullStr Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector
title_full_unstemmed Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector
title_sort Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector
author Zapata, Gianpierre
author_facet Zapata, Gianpierre
Murga, Javier
Raymundo, Carlos
Alvarez, Jose
Dominguez, Francisco
author_role author
author2 Murga, Javier
Raymundo, Carlos
Alvarez, Jose
Dominguez, Francisco
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Zapata, Gianpierre
Murga, Javier
Raymundo, Carlos
Alvarez, Jose
Dominguez, Francisco
dc.subject.en_US.fl_str_mv Big data
Cloud computing
Sentiment analysis
Tourism sector
Travel management process
topic Big data
Cloud computing
Sentiment analysis
Tourism sector
Travel management process
description In the sustainable tourist sector today, there is a wide margin of loss in small and medium-sized enterprise (SMEs) because of a poor control in logistical expenses. In other words, acquired goods are note being sold, a scenario which is very common in tourism SMEs. These SMEs buy a number of travel packages to big companies and because of the lack of demand of said packages, they expire and they become an expense, not the investment it was meant to be. To solve this problem, we propose a Predictive model based on sentiment analysis of a social networks that will help the sales decision making. Once the data of the social network is analyzed, we also propose a prediction model of tourist destinations, using this information as data source it will be able to predict the tourist interest. In addition, a case study was applied to a real Peruvian tourist enterprise showing their data before and after using the proposed model in order to validate the feasibility of proposed model.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2021-06-07T17:16:41Z
dc.date.available.none.fl_str_mv 2021-06-07T17:16:41Z
dc.date.issued.fl_str_mv 2017-01-01
dc.type.en_US.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.5220/0006583302320240
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/656350
dc.identifier.journal.en_US.fl_str_mv IC3K 2017 - Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management
dc.identifier.eid.none.fl_str_mv 2-s2.0-85055491777
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85055491777
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.5220/0006583302320240
IC3K 2017 - Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management
2-s2.0-85055491777
SCOPUS_ID:85055491777
0000 0001 2196 144X
url http://hdl.handle.net/10757/656350
dc.language.iso.en_US.fl_str_mv eng
language eng
dc.relation.url.en_US.fl_str_mv https://www.scitepress.org/Papers/2017/65833/65833.pdf
dc.rights.en_US.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.en_US.fl_str_mv application/pdf
dc.publisher.en_US.fl_str_mv SciTePress
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Académico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv IC3K 2017 - Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management
dc.source.volume.none.fl_str_mv 3
dc.source.beginpage.none.fl_str_mv 232
dc.source.endpage.none.fl_str_mv 240
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/5/10.52200006583302320240.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/4/10.52200006583302320240.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/1/10.52200006583302320240.pdf
bitstream.checksum.fl_str_mv 1b7b72669e990a18862c9353967a0f22
41cc819d6ad0d3160947ce2c877c3e0d
8a4605be74aa9ea9d79846c1fba20a33
934f4ca17e109e0a05eaeaba504d7ce4
679eec53e867c7747bd24c90bae9c3dd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837188364324831232
spelling 96d2763741e53bc8b4928f0aa96e9bfa500e2d4d3bc729c41b1ac736f4705cabf22500f1b29165990ab4ce165cbf28f5e4ccd95006ad0c39934b10912922ec77a637c8ecd500bca061da163b707885b99dc247d3d44a500Zapata, GianpierreMurga, JavierRaymundo, CarlosAlvarez, JoseDominguez, Francisco2021-06-07T17:16:41Z2021-06-07T17:16:41Z2017-01-0110.5220/0006583302320240http://hdl.handle.net/10757/656350IC3K 2017 - Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management2-s2.0-85055491777SCOPUS_ID:850554917770000 0001 2196 144XIn the sustainable tourist sector today, there is a wide margin of loss in small and medium-sized enterprise (SMEs) because of a poor control in logistical expenses. In other words, acquired goods are note being sold, a scenario which is very common in tourism SMEs. These SMEs buy a number of travel packages to big companies and because of the lack of demand of said packages, they expire and they become an expense, not the investment it was meant to be. To solve this problem, we propose a Predictive model based on sentiment analysis of a social networks that will help the sales decision making. Once the data of the social network is analyzed, we also propose a prediction model of tourist destinations, using this information as data source it will be able to predict the tourist interest. In addition, a case study was applied to a real Peruvian tourist enterprise showing their data before and after using the proposed model in order to validate the feasibility of proposed model.application/pdfengSciTePresshttps://www.scitepress.org/Papers/2017/65833/65833.pdfinfo:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Universidad Peruana de Ciencias Aplicadas (UPC)Repositorio Académico - UPCIC3K 2017 - Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management3232240reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCBig dataCloud computingSentiment analysisTourism sectorTravel management processPredictive model based on sentiment analysis for peruvian smes in the sustainable tourist sectorinfo:eu-repo/semantics/article2021-06-07T17:16:42ZTHUMBNAIL10.52200006583302320240.pdf.jpg10.52200006583302320240.pdf.jpgGenerated Thumbnailimage/jpeg91178https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/5/10.52200006583302320240.pdf.jpg1b7b72669e990a18862c9353967a0f22MD55falseTEXT10.52200006583302320240.pdf.txt10.52200006583302320240.pdf.txtExtracted texttext/plain36073https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/4/10.52200006583302320240.pdf.txt41cc819d6ad0d3160947ce2c877c3e0dMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL10.52200006583302320240.pdf10.52200006583302320240.pdfapplication/pdf1475305https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/1/10.52200006583302320240.pdf679eec53e867c7747bd24c90bae9c3ddMD51true10757/656350oai:repositorioacademico.upc.edu.pe:10757/6563502021-06-08 02:26:20.59Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).