Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector
Descripción del Articulo
In the sustainable tourist sector today, there is a wide margin of loss in small and medium-sized enterprise (SMEs) because of a poor control in logistical expenses. In other words, acquired goods are note being sold, a scenario which is very common in tourism SMEs. These SMEs buy a number of travel...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2017 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/656350 |
Enlace del recurso: | http://hdl.handle.net/10757/656350 |
Nivel de acceso: | acceso abierto |
Materia: | Big data Cloud computing Sentiment analysis Tourism sector Travel management process |
id |
UUPC_53e46db645fb8d91103f8cd35d3014f6 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/656350 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.en_US.fl_str_mv |
Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector |
title |
Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector |
spellingShingle |
Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector Zapata, Gianpierre Big data Cloud computing Sentiment analysis Tourism sector Travel management process |
title_short |
Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector |
title_full |
Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector |
title_fullStr |
Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector |
title_full_unstemmed |
Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector |
title_sort |
Predictive model based on sentiment analysis for peruvian smes in the sustainable tourist sector |
author |
Zapata, Gianpierre |
author_facet |
Zapata, Gianpierre Murga, Javier Raymundo, Carlos Alvarez, Jose Dominguez, Francisco |
author_role |
author |
author2 |
Murga, Javier Raymundo, Carlos Alvarez, Jose Dominguez, Francisco |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Zapata, Gianpierre Murga, Javier Raymundo, Carlos Alvarez, Jose Dominguez, Francisco |
dc.subject.en_US.fl_str_mv |
Big data Cloud computing Sentiment analysis Tourism sector Travel management process |
topic |
Big data Cloud computing Sentiment analysis Tourism sector Travel management process |
description |
In the sustainable tourist sector today, there is a wide margin of loss in small and medium-sized enterprise (SMEs) because of a poor control in logistical expenses. In other words, acquired goods are note being sold, a scenario which is very common in tourism SMEs. These SMEs buy a number of travel packages to big companies and because of the lack of demand of said packages, they expire and they become an expense, not the investment it was meant to be. To solve this problem, we propose a Predictive model based on sentiment analysis of a social networks that will help the sales decision making. Once the data of the social network is analyzed, we also propose a prediction model of tourist destinations, using this information as data source it will be able to predict the tourist interest. In addition, a case study was applied to a real Peruvian tourist enterprise showing their data before and after using the proposed model in order to validate the feasibility of proposed model. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2021-06-07T17:16:41Z |
dc.date.available.none.fl_str_mv |
2021-06-07T17:16:41Z |
dc.date.issued.fl_str_mv |
2017-01-01 |
dc.type.en_US.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.5220/0006583302320240 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/656350 |
dc.identifier.journal.en_US.fl_str_mv |
IC3K 2017 - Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85055491777 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85055491777 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
10.5220/0006583302320240 IC3K 2017 - Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management 2-s2.0-85055491777 SCOPUS_ID:85055491777 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/656350 |
dc.language.iso.en_US.fl_str_mv |
eng |
language |
eng |
dc.relation.url.en_US.fl_str_mv |
https://www.scitepress.org/Papers/2017/65833/65833.pdf |
dc.rights.en_US.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.en_US.fl_str_mv |
application/pdf |
dc.publisher.en_US.fl_str_mv |
SciTePress |
dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Académico - UPC |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
IC3K 2017 - Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management |
dc.source.volume.none.fl_str_mv |
3 |
dc.source.beginpage.none.fl_str_mv |
232 |
dc.source.endpage.none.fl_str_mv |
240 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/5/10.52200006583302320240.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/4/10.52200006583302320240.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/1/10.52200006583302320240.pdf |
bitstream.checksum.fl_str_mv |
1b7b72669e990a18862c9353967a0f22 41cc819d6ad0d3160947ce2c877c3e0d 8a4605be74aa9ea9d79846c1fba20a33 934f4ca17e109e0a05eaeaba504d7ce4 679eec53e867c7747bd24c90bae9c3dd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837188364324831232 |
spelling |
96d2763741e53bc8b4928f0aa96e9bfa500e2d4d3bc729c41b1ac736f4705cabf22500f1b29165990ab4ce165cbf28f5e4ccd95006ad0c39934b10912922ec77a637c8ecd500bca061da163b707885b99dc247d3d44a500Zapata, GianpierreMurga, JavierRaymundo, CarlosAlvarez, JoseDominguez, Francisco2021-06-07T17:16:41Z2021-06-07T17:16:41Z2017-01-0110.5220/0006583302320240http://hdl.handle.net/10757/656350IC3K 2017 - Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management2-s2.0-85055491777SCOPUS_ID:850554917770000 0001 2196 144XIn the sustainable tourist sector today, there is a wide margin of loss in small and medium-sized enterprise (SMEs) because of a poor control in logistical expenses. In other words, acquired goods are note being sold, a scenario which is very common in tourism SMEs. These SMEs buy a number of travel packages to big companies and because of the lack of demand of said packages, they expire and they become an expense, not the investment it was meant to be. To solve this problem, we propose a Predictive model based on sentiment analysis of a social networks that will help the sales decision making. Once the data of the social network is analyzed, we also propose a prediction model of tourist destinations, using this information as data source it will be able to predict the tourist interest. In addition, a case study was applied to a real Peruvian tourist enterprise showing their data before and after using the proposed model in order to validate the feasibility of proposed model.application/pdfengSciTePresshttps://www.scitepress.org/Papers/2017/65833/65833.pdfinfo:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Universidad Peruana de Ciencias Aplicadas (UPC)Repositorio Académico - UPCIC3K 2017 - Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management3232240reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCBig dataCloud computingSentiment analysisTourism sectorTravel management processPredictive model based on sentiment analysis for peruvian smes in the sustainable tourist sectorinfo:eu-repo/semantics/article2021-06-07T17:16:42ZTHUMBNAIL10.52200006583302320240.pdf.jpg10.52200006583302320240.pdf.jpgGenerated Thumbnailimage/jpeg91178https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/5/10.52200006583302320240.pdf.jpg1b7b72669e990a18862c9353967a0f22MD55falseTEXT10.52200006583302320240.pdf.txt10.52200006583302320240.pdf.txtExtracted texttext/plain36073https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/4/10.52200006583302320240.pdf.txt41cc819d6ad0d3160947ce2c877c3e0dMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL10.52200006583302320240.pdf10.52200006583302320240.pdfapplication/pdf1475305https://repositorioacademico.upc.edu.pe/bitstream/10757/656350/1/10.52200006583302320240.pdf679eec53e867c7747bd24c90bae9c3ddMD51true10757/656350oai:repositorioacademico.upc.edu.pe:10757/6563502021-06-08 02:26:20.59Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).