An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN

Descripción del Articulo

Deep learning (DL) is a new approach that provides exceptional speed in healthcare activities with greater accuracy. In this regard, "convolutional neural network"or CNN and blockchain are two important parts that together fasten the disease detection procedures securely. CNN can detect an...

Descripción completa

Detalles Bibliográficos
Autores: Aboamer, Mohamed Abdelkader, Sikkandar, Mohamed Yacin, Gupta, Sachin, Vives, Luis, Joshi, Kapil, Omarov, Batyrkhan, Singh, Sitesh Kumar
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/660276
Enlace del recurso:http://hdl.handle.net/10757/660276
Nivel de acceso:acceso abierto
Materia:Biological organs
Convolutional neural networks
Deep learning
Diseases
Forecasting
Image enhancement
Pixels
Regression analysis
id UUPC_4d10acf5026fc3b2dededa5e9fc96df1
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/660276
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN
title An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN
spellingShingle An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN
Aboamer, Mohamed Abdelkader
Biological organs
Convolutional neural networks
Deep learning
Diseases
Forecasting
Image enhancement
Pixels
Regression analysis
title_short An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN
title_full An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN
title_fullStr An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN
title_full_unstemmed An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN
title_sort An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN
author Aboamer, Mohamed Abdelkader
author_facet Aboamer, Mohamed Abdelkader
Sikkandar, Mohamed Yacin
Gupta, Sachin
Vives, Luis
Joshi, Kapil
Omarov, Batyrkhan
Singh, Sitesh Kumar
author_role author
author2 Sikkandar, Mohamed Yacin
Gupta, Sachin
Vives, Luis
Joshi, Kapil
Omarov, Batyrkhan
Singh, Sitesh Kumar
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Aboamer, Mohamed Abdelkader
Sikkandar, Mohamed Yacin
Gupta, Sachin
Vives, Luis
Joshi, Kapil
Omarov, Batyrkhan
Singh, Sitesh Kumar
dc.subject.es_PE.fl_str_mv Biological organs
Convolutional neural networks
Deep learning
Diseases
Forecasting
Image enhancement
Pixels
Regression analysis
topic Biological organs
Convolutional neural networks
Deep learning
Diseases
Forecasting
Image enhancement
Pixels
Regression analysis
description Deep learning (DL) is a new approach that provides exceptional speed in healthcare activities with greater accuracy. In this regard, "convolutional neural network"or CNN and blockchain are two important parts that together fasten the disease detection procedures securely. CNN can detect and predict diseases like lung cancer and help determine food quality, and blockchain is responsible for data. This research is going to analyze the extension of blockchain with the help of CNN for lung cancer prediction and making food safer. CNN algorithm has been trained with a huge number of images by altering the filters, features, epoch values, padding value, kernel size, and resolution. Subsequently, the CNN accuracy has been measured to understand how these factors affect the accuracy. A linear regression analysis has been carried out in IBM SPSS where the independent variables selected are image dataset augmentation, epochs, features, pixel size (90 × 90 to 512 × 512), kernel size (0-7), filters (10-40), and padding. The dependent variable is the accuracy of CNN. Findings suggested that a larger number of epochs improve the CNN accuracy; however, when more than 12 epochs are considered, the accuracy may decrease. A greater pixel/resolution also improves the accuracy of cancer and food image detection. When images are provided with excellent features and filters, the CNN accuracy improves. The main objective of this research is to comprehend how the independent variables affect the accuracy (dependent), but the reading may not be fully exact, and thus, the researcher has conceded out a minor task, which delivered evidence supportive of the analysis and against the analysis. As a result, it can be determined that image augmentation and a large number of images develop the CNN accuracy in lung cancer prediction and food safety determination when features and filters are applied correctly. A total of 10-12 epochs are desirable for CNN to receive 99% accuracy with 1 padding.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-10T16:25:12Z
dc.date.available.none.fl_str_mv 2022-07-10T16:25:12Z
dc.date.issued.fl_str_mv 2022-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 01469428
dc.identifier.doi.none.fl_str_mv 10.1155/2022/5845870
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/660276
dc.identifier.eissn.none.fl_str_mv 17454557
dc.identifier.journal.es_PE.fl_str_mv Journal of Food Quality
dc.identifier.eid.none.fl_str_mv 2-s2.0-85130400017
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85130400017
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 01469428
10.1155/2022/5845870
17454557
Journal of Food Quality
2-s2.0-85130400017
SCOPUS_ID:85130400017
0000 0001 2196 144X
url http://hdl.handle.net/10757/660276
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.hindawi.com/journals/jfq/2022/5845870/
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Hindawi Limited
dc.source.es_PE.fl_str_mv Repositorio Academico - UPC
Universidad Peruana de Ciencias Aplicadas (UPC)
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Journal of Food Quality
dc.source.volume.none.fl_str_mv 2022
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/5/10.115520225845870.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/4/10.115520225845870.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/1/10.115520225845870.pdf
bitstream.checksum.fl_str_mv fc6beb63b1bb17c4043b880a908933cf
2c0dca9ffbc79bfdc76d92b0fdcf6700
8a4605be74aa9ea9d79846c1fba20a33
934f4ca17e109e0a05eaeaba504d7ce4
8c023ab2e6c04467c69a15fbeafcb5b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837188479468961792
spelling 9af35b4aae79381919870bd5176e7984300c4c31dd9fad471fc4b2af99b3f251f6d300784573fa6c2859263c8c9890fe9c6fca300b5df785608d336d7fb27eeac799713de50055e6a5a344d275d07c5b4fb9532b0f6e30095f651932688c0808a5c45c641dc4ed53003cd45159e24e5ac9bfa237371a573118300Aboamer, Mohamed AbdelkaderSikkandar, Mohamed YacinGupta, SachinVives, LuisJoshi, KapilOmarov, BatyrkhanSingh, Sitesh Kumar2022-07-10T16:25:12Z2022-07-10T16:25:12Z2022-01-010146942810.1155/2022/5845870http://hdl.handle.net/10757/66027617454557Journal of Food Quality2-s2.0-85130400017SCOPUS_ID:851304000170000 0001 2196 144XDeep learning (DL) is a new approach that provides exceptional speed in healthcare activities with greater accuracy. In this regard, "convolutional neural network"or CNN and blockchain are two important parts that together fasten the disease detection procedures securely. CNN can detect and predict diseases like lung cancer and help determine food quality, and blockchain is responsible for data. This research is going to analyze the extension of blockchain with the help of CNN for lung cancer prediction and making food safer. CNN algorithm has been trained with a huge number of images by altering the filters, features, epoch values, padding value, kernel size, and resolution. Subsequently, the CNN accuracy has been measured to understand how these factors affect the accuracy. A linear regression analysis has been carried out in IBM SPSS where the independent variables selected are image dataset augmentation, epochs, features, pixel size (90 × 90 to 512 × 512), kernel size (0-7), filters (10-40), and padding. The dependent variable is the accuracy of CNN. Findings suggested that a larger number of epochs improve the CNN accuracy; however, when more than 12 epochs are considered, the accuracy may decrease. A greater pixel/resolution also improves the accuracy of cancer and food image detection. When images are provided with excellent features and filters, the CNN accuracy improves. The main objective of this research is to comprehend how the independent variables affect the accuracy (dependent), but the reading may not be fully exact, and thus, the researcher has conceded out a minor task, which delivered evidence supportive of the analysis and against the analysis. As a result, it can be determined that image augmentation and a large number of images develop the CNN accuracy in lung cancer prediction and food safety determination when features and filters are applied correctly. A total of 10-12 epochs are desirable for CNN to receive 99% accuracy with 1 padding.Revisión por paresapplication/pdfengHindawi Limitedhttps://www.hindawi.com/journals/jfq/2022/5845870/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)Journal of Food Quality2022reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCBiological organsConvolutional neural networksDeep learningDiseasesForecastingImage enhancementPixelsRegression analysisAn Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNNinfo:eu-repo/semantics/article2022-07-10T16:25:13ZTHUMBNAIL10.115520225845870.pdf.jpg10.115520225845870.pdf.jpgGenerated Thumbnailimage/jpeg91958https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/5/10.115520225845870.pdf.jpgfc6beb63b1bb17c4043b880a908933cfMD55falseTEXT10.115520225845870.pdf.txt10.115520225845870.pdf.txtExtracted texttext/plain44393https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/4/10.115520225845870.pdf.txt2c0dca9ffbc79bfdc76d92b0fdcf6700MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL10.115520225845870.pdf10.115520225845870.pdfapplication/pdf2646873https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/1/10.115520225845870.pdf8c023ab2e6c04467c69a15fbeafcb5b2MD51true10757/660276oai:repositorioacademico.upc.edu.pe:10757/6602762022-07-11 06:23:52.232Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.949927
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).