An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN
Descripción del Articulo
Deep learning (DL) is a new approach that provides exceptional speed in healthcare activities with greater accuracy. In this regard, "convolutional neural network"or CNN and blockchain are two important parts that together fasten the disease detection procedures securely. CNN can detect an...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/660276 |
Enlace del recurso: | http://hdl.handle.net/10757/660276 |
Nivel de acceso: | acceso abierto |
Materia: | Biological organs Convolutional neural networks Deep learning Diseases Forecasting Image enhancement Pixels Regression analysis |
id |
UUPC_4d10acf5026fc3b2dededa5e9fc96df1 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/660276 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN |
title |
An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN |
spellingShingle |
An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN Aboamer, Mohamed Abdelkader Biological organs Convolutional neural networks Deep learning Diseases Forecasting Image enhancement Pixels Regression analysis |
title_short |
An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN |
title_full |
An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN |
title_fullStr |
An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN |
title_full_unstemmed |
An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN |
title_sort |
An Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNN |
author |
Aboamer, Mohamed Abdelkader |
author_facet |
Aboamer, Mohamed Abdelkader Sikkandar, Mohamed Yacin Gupta, Sachin Vives, Luis Joshi, Kapil Omarov, Batyrkhan Singh, Sitesh Kumar |
author_role |
author |
author2 |
Sikkandar, Mohamed Yacin Gupta, Sachin Vives, Luis Joshi, Kapil Omarov, Batyrkhan Singh, Sitesh Kumar |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Aboamer, Mohamed Abdelkader Sikkandar, Mohamed Yacin Gupta, Sachin Vives, Luis Joshi, Kapil Omarov, Batyrkhan Singh, Sitesh Kumar |
dc.subject.es_PE.fl_str_mv |
Biological organs Convolutional neural networks Deep learning Diseases Forecasting Image enhancement Pixels Regression analysis |
topic |
Biological organs Convolutional neural networks Deep learning Diseases Forecasting Image enhancement Pixels Regression analysis |
description |
Deep learning (DL) is a new approach that provides exceptional speed in healthcare activities with greater accuracy. In this regard, "convolutional neural network"or CNN and blockchain are two important parts that together fasten the disease detection procedures securely. CNN can detect and predict diseases like lung cancer and help determine food quality, and blockchain is responsible for data. This research is going to analyze the extension of blockchain with the help of CNN for lung cancer prediction and making food safer. CNN algorithm has been trained with a huge number of images by altering the filters, features, epoch values, padding value, kernel size, and resolution. Subsequently, the CNN accuracy has been measured to understand how these factors affect the accuracy. A linear regression analysis has been carried out in IBM SPSS where the independent variables selected are image dataset augmentation, epochs, features, pixel size (90 × 90 to 512 × 512), kernel size (0-7), filters (10-40), and padding. The dependent variable is the accuracy of CNN. Findings suggested that a larger number of epochs improve the CNN accuracy; however, when more than 12 epochs are considered, the accuracy may decrease. A greater pixel/resolution also improves the accuracy of cancer and food image detection. When images are provided with excellent features and filters, the CNN accuracy improves. The main objective of this research is to comprehend how the independent variables affect the accuracy (dependent), but the reading may not be fully exact, and thus, the researcher has conceded out a minor task, which delivered evidence supportive of the analysis and against the analysis. As a result, it can be determined that image augmentation and a large number of images develop the CNN accuracy in lung cancer prediction and food safety determination when features and filters are applied correctly. A total of 10-12 epochs are desirable for CNN to receive 99% accuracy with 1 padding. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-10T16:25:12Z |
dc.date.available.none.fl_str_mv |
2022-07-10T16:25:12Z |
dc.date.issued.fl_str_mv |
2022-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
01469428 |
dc.identifier.doi.none.fl_str_mv |
10.1155/2022/5845870 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/660276 |
dc.identifier.eissn.none.fl_str_mv |
17454557 |
dc.identifier.journal.es_PE.fl_str_mv |
Journal of Food Quality |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85130400017 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85130400017 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
01469428 10.1155/2022/5845870 17454557 Journal of Food Quality 2-s2.0-85130400017 SCOPUS_ID:85130400017 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/660276 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://www.hindawi.com/journals/jfq/2022/5845870/ |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Hindawi Limited |
dc.source.es_PE.fl_str_mv |
Repositorio Academico - UPC Universidad Peruana de Ciencias Aplicadas (UPC) |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Journal of Food Quality |
dc.source.volume.none.fl_str_mv |
2022 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/5/10.115520225845870.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/4/10.115520225845870.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/1/10.115520225845870.pdf |
bitstream.checksum.fl_str_mv |
fc6beb63b1bb17c4043b880a908933cf 2c0dca9ffbc79bfdc76d92b0fdcf6700 8a4605be74aa9ea9d79846c1fba20a33 934f4ca17e109e0a05eaeaba504d7ce4 8c023ab2e6c04467c69a15fbeafcb5b2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837188479468961792 |
spelling |
9af35b4aae79381919870bd5176e7984300c4c31dd9fad471fc4b2af99b3f251f6d300784573fa6c2859263c8c9890fe9c6fca300b5df785608d336d7fb27eeac799713de50055e6a5a344d275d07c5b4fb9532b0f6e30095f651932688c0808a5c45c641dc4ed53003cd45159e24e5ac9bfa237371a573118300Aboamer, Mohamed AbdelkaderSikkandar, Mohamed YacinGupta, SachinVives, LuisJoshi, KapilOmarov, BatyrkhanSingh, Sitesh Kumar2022-07-10T16:25:12Z2022-07-10T16:25:12Z2022-01-010146942810.1155/2022/5845870http://hdl.handle.net/10757/66027617454557Journal of Food Quality2-s2.0-85130400017SCOPUS_ID:851304000170000 0001 2196 144XDeep learning (DL) is a new approach that provides exceptional speed in healthcare activities with greater accuracy. In this regard, "convolutional neural network"or CNN and blockchain are two important parts that together fasten the disease detection procedures securely. CNN can detect and predict diseases like lung cancer and help determine food quality, and blockchain is responsible for data. This research is going to analyze the extension of blockchain with the help of CNN for lung cancer prediction and making food safer. CNN algorithm has been trained with a huge number of images by altering the filters, features, epoch values, padding value, kernel size, and resolution. Subsequently, the CNN accuracy has been measured to understand how these factors affect the accuracy. A linear regression analysis has been carried out in IBM SPSS where the independent variables selected are image dataset augmentation, epochs, features, pixel size (90 × 90 to 512 × 512), kernel size (0-7), filters (10-40), and padding. The dependent variable is the accuracy of CNN. Findings suggested that a larger number of epochs improve the CNN accuracy; however, when more than 12 epochs are considered, the accuracy may decrease. A greater pixel/resolution also improves the accuracy of cancer and food image detection. When images are provided with excellent features and filters, the CNN accuracy improves. The main objective of this research is to comprehend how the independent variables affect the accuracy (dependent), but the reading may not be fully exact, and thus, the researcher has conceded out a minor task, which delivered evidence supportive of the analysis and against the analysis. As a result, it can be determined that image augmentation and a large number of images develop the CNN accuracy in lung cancer prediction and food safety determination when features and filters are applied correctly. A total of 10-12 epochs are desirable for CNN to receive 99% accuracy with 1 padding.Revisión por paresapplication/pdfengHindawi Limitedhttps://www.hindawi.com/journals/jfq/2022/5845870/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)Journal of Food Quality2022reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCBiological organsConvolutional neural networksDeep learningDiseasesForecastingImage enhancementPixelsRegression analysisAn Investigation in Analyzing the Food Quality Well-Being for Lung Cancer Using Blockchain through CNNinfo:eu-repo/semantics/article2022-07-10T16:25:13ZTHUMBNAIL10.115520225845870.pdf.jpg10.115520225845870.pdf.jpgGenerated Thumbnailimage/jpeg91958https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/5/10.115520225845870.pdf.jpgfc6beb63b1bb17c4043b880a908933cfMD55falseTEXT10.115520225845870.pdf.txt10.115520225845870.pdf.txtExtracted texttext/plain44393https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/4/10.115520225845870.pdf.txt2c0dca9ffbc79bfdc76d92b0fdcf6700MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL10.115520225845870.pdf10.115520225845870.pdfapplication/pdf2646873https://repositorioacademico.upc.edu.pe/bitstream/10757/660276/1/10.115520225845870.pdf8c023ab2e6c04467c69a15fbeafcb5b2MD51true10757/660276oai:repositorioacademico.upc.edu.pe:10757/6602762022-07-11 06:23:52.232Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.949927 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).