Modelo de análisis predictivo para el monitoreo de la deserción estudiantil aplicando machine learning en la educación superior universitaria del Perú
Descripción del Articulo
El presente proyecto analiza los principales factores de la deserción universitaria y plantea un modelo de análisis predictivo aplicando Machine Learning para detectar de manera temprana casos de deserción. Actualmente, la deserción universitaria es un problema que no solo afecta al estudiante, sino...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/674924 |
Enlace del recurso: | http://hdl.handle.net/10757/674924 |
Nivel de acceso: | acceso abierto |
Materia: | Análisis predictivo Aprendizaje automático Deserción universitaria Bosque aleatorio Predictive analytics Machine learning Student dropout Random forest. https://purl.org/pe-repo/ocde/ford#2.02.04 https://purl.org/pe-repo/ocde/ford#2.00.00 |
Sumario: | El presente proyecto analiza los principales factores de la deserción universitaria y plantea un modelo de análisis predictivo aplicando Machine Learning para detectar de manera temprana casos de deserción. Actualmente, la deserción universitaria es un problema que no solo afecta al estudiante, sino a las familias, universidad y sociedad. Como consecuencias, la pérdida de un profesional genera pérdidas en las inversiones de las universidad y disminución de investigación y producción científica. Con el apoyo de los algoritmos de Machine Learning, el proyecto identifica casos de deserción con la finalidad que las universidades actúen lo más antes posible. Tras analizar investigaciones similares, se realizó un Benchmarking de los algoritmos potencialmente aplicables. Finalmente, el proyecto desarrolla un modelo de análisis predictivo aplicando el algoritmo Random Forest (RF). Para el diseño del modelo, se definió un total de catorce (14) variables que pertenecen datos demográficos del alumno, formación preuniversitaria y admisión del alumno, entorno familiar, integración social y desempeño académico del alumno y variables cognitivas y emocionales del alumno. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).