Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning
Descripción del Articulo
so, machine learning techniques are being developed to improve performance and maintenance prediction. Increasing our knowledge of the relationship between humans and algorithms, Because data is so valuable, improving strategies for intelligently having to manage the now-ubiquitous content infrastru...
| Autores: | , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/660901 |
| Enlace del recurso: | http://hdl.handle.net/10757/660901 |
| Nivel de acceso: | acceso embargado |
| Materia: | Algorithm automatic assistance classification clustering Data Acquisition Data Management Data processing Data protection data wrangling Deep learning Healthcare imputation Internet of things Interpretation probabilities regression Security statistics supervised learning |
| id |
UUPC_45fee13808cce0f1e2d3d260a149472e |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/660901 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning |
| title |
Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning |
| spellingShingle |
Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning Vives, Luis Algorithm automatic assistance classification clustering Data Acquisition Data Management Data processing Data protection data wrangling Deep learning Healthcare imputation Internet of things Interpretation probabilities regression Security statistics supervised learning |
| title_short |
Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning |
| title_full |
Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning |
| title_fullStr |
Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning |
| title_full_unstemmed |
Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning |
| title_sort |
Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning |
| author |
Vives, Luis |
| author_facet |
Vives, Luis Basha, N. Khadar Poonam Gehlot, Anita Chole, Vikrant Pant, Kumud |
| author_role |
author |
| author2 |
Basha, N. Khadar Poonam Gehlot, Anita Chole, Vikrant Pant, Kumud |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Vives, Luis Basha, N. Khadar Poonam Gehlot, Anita Chole, Vikrant Pant, Kumud |
| dc.subject.es_PE.fl_str_mv |
Algorithm automatic assistance classification clustering Data Acquisition Data Management Data processing Data protection data wrangling Deep learning Healthcare imputation Internet of things Interpretation probabilities regression Security statistics supervised learning |
| topic |
Algorithm automatic assistance classification clustering Data Acquisition Data Management Data processing Data protection data wrangling Deep learning Healthcare imputation Internet of things Interpretation probabilities regression Security statistics supervised learning |
| description |
so, machine learning techniques are being developed to improve performance and maintenance prediction. Increasing our knowledge of the relationship between humans and algorithms, Because data is so valuable, improving strategies for intelligently having to manage the now-ubiquitous content infrastructures is a necessary part of the process toward completely autonomous agents. Numerous researchers recently developed numerous computer-aided diagnostic algorithms employing various supervised learning approaches. Early identification of sickness may help to reduce the number of people who die as a result of these illnesses. Using machine learning techniques, this research creates an efficient automated illness diagnostic algorithm. We chose three key disorders in this paper: coronavirus, cardiovascular diseases, and diabetes. The data are inputted into a mobile application in the suggested model, the investigation is then done in a real-time dataset that used a pre-trained model machine learning technique trained within the same dataset then implemented in firebase, and lastly, the illness identification result can be seen in the mobile application. Logistic regression is a method of prediction calculation |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-09-08T14:05:23Z |
| dc.date.available.none.fl_str_mv |
2022-09-08T14:05:23Z |
| dc.date.issued.fl_str_mv |
2022-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.doi.none.fl_str_mv |
10.1109/ICACITE53722.2022.9823933 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/660901 |
| dc.identifier.journal.es_PE.fl_str_mv |
2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022 |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85135472454 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85135472454 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
10.1109/ICACITE53722.2022.9823933 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022 2-s2.0-85135472454 SCOPUS_ID:85135472454 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/660901 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.url.es_PE.fl_str_mv |
https://ieeexplore.ieee.org/document/9823933 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| dc.source.es_PE.fl_str_mv |
Repositorio Academico - UPC Universidad Peruana de Ciencias Aplicadas (UPC) |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022 |
| dc.source.beginpage.none.fl_str_mv |
2458 |
| dc.source.endpage.none.fl_str_mv |
2462 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/660901/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846065824229490688 |
| spelling |
b5df785608d336d7fb27eeac799713de5001cf2f68838fb486964e9873233b476253009f983f688119daea8449e8775cfd93f23006dbf7d6e29c2b4e5d564a11881b642c4300d536e04579d7b8a194c0ee4710ab572d300d9f35fc7c26e343e118f00cc1358d284300Vives, LuisBasha, N. KhadarPoonamGehlot, AnitaChole, VikrantPant, Kumud2022-09-08T14:05:23Z2022-09-08T14:05:23Z2022-01-0110.1109/ICACITE53722.2022.9823933http://hdl.handle.net/10757/6609012022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 20222-s2.0-85135472454SCOPUS_ID:851354724540000 0001 2196 144Xso, machine learning techniques are being developed to improve performance and maintenance prediction. Increasing our knowledge of the relationship between humans and algorithms, Because data is so valuable, improving strategies for intelligently having to manage the now-ubiquitous content infrastructures is a necessary part of the process toward completely autonomous agents. Numerous researchers recently developed numerous computer-aided diagnostic algorithms employing various supervised learning approaches. Early identification of sickness may help to reduce the number of people who die as a result of these illnesses. Using machine learning techniques, this research creates an efficient automated illness diagnostic algorithm. We chose three key disorders in this paper: coronavirus, cardiovascular diseases, and diabetes. The data are inputted into a mobile application in the suggested model, the investigation is then done in a real-time dataset that used a pre-trained model machine learning technique trained within the same dataset then implemented in firebase, and lastly, the illness identification result can be seen in the mobile application. Logistic regression is a method of prediction calculationRevisión por paresapplication/htmlengInstitute of Electrical and Electronics Engineers Inc.https://ieeexplore.ieee.org/document/9823933info:eu-repo/semantics/embargoedAccessRepositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 202224582462reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCAlgorithmautomatic assistanceclassificationclusteringData AcquisitionData ManagementData processingData protectiondata wranglingDeep learningHealthcareimputationInternet of thingsInterpretationprobabilitiesregressionSecuritystatisticssupervised learningDevelop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learninginfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/660901/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/660901oai:repositorioacademico.upc.edu.pe:10757/6609012022-09-08 14:05:24.452Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.987529 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).