Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning

Descripción del Articulo

so, machine learning techniques are being developed to improve performance and maintenance prediction. Increasing our knowledge of the relationship between humans and algorithms, Because data is so valuable, improving strategies for intelligently having to manage the now-ubiquitous content infrastru...

Descripción completa

Detalles Bibliográficos
Autores: Vives, Luis, Basha, N. Khadar, Poonam, Gehlot, Anita, Chole, Vikrant, Pant, Kumud
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/660901
Enlace del recurso:http://hdl.handle.net/10757/660901
Nivel de acceso:acceso embargado
Materia:Algorithm
automatic assistance
classification
clustering
Data Acquisition
Data Management
Data processing
Data protection
data wrangling
Deep learning
Healthcare
imputation
Internet of things
Interpretation
probabilities
regression
Security
statistics
supervised learning
id UUPC_45fee13808cce0f1e2d3d260a149472e
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/660901
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning
title Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning
spellingShingle Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning
Vives, Luis
Algorithm
automatic assistance
classification
clustering
Data Acquisition
Data Management
Data processing
Data protection
data wrangling
Deep learning
Healthcare
imputation
Internet of things
Interpretation
probabilities
regression
Security
statistics
supervised learning
title_short Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning
title_full Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning
title_fullStr Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning
title_full_unstemmed Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning
title_sort Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning
author Vives, Luis
author_facet Vives, Luis
Basha, N. Khadar
Poonam
Gehlot, Anita
Chole, Vikrant
Pant, Kumud
author_role author
author2 Basha, N. Khadar
Poonam
Gehlot, Anita
Chole, Vikrant
Pant, Kumud
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Vives, Luis
Basha, N. Khadar
Poonam
Gehlot, Anita
Chole, Vikrant
Pant, Kumud
dc.subject.es_PE.fl_str_mv Algorithm
automatic assistance
classification
clustering
Data Acquisition
Data Management
Data processing
Data protection
data wrangling
Deep learning
Healthcare
imputation
Internet of things
Interpretation
probabilities
regression
Security
statistics
supervised learning
topic Algorithm
automatic assistance
classification
clustering
Data Acquisition
Data Management
Data processing
Data protection
data wrangling
Deep learning
Healthcare
imputation
Internet of things
Interpretation
probabilities
regression
Security
statistics
supervised learning
description so, machine learning techniques are being developed to improve performance and maintenance prediction. Increasing our knowledge of the relationship between humans and algorithms, Because data is so valuable, improving strategies for intelligently having to manage the now-ubiquitous content infrastructures is a necessary part of the process toward completely autonomous agents. Numerous researchers recently developed numerous computer-aided diagnostic algorithms employing various supervised learning approaches. Early identification of sickness may help to reduce the number of people who die as a result of these illnesses. Using machine learning techniques, this research creates an efficient automated illness diagnostic algorithm. We chose three key disorders in this paper: coronavirus, cardiovascular diseases, and diabetes. The data are inputted into a mobile application in the suggested model, the investigation is then done in a real-time dataset that used a pre-trained model machine learning technique trained within the same dataset then implemented in firebase, and lastly, the illness identification result can be seen in the mobile application. Logistic regression is a method of prediction calculation
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-08T14:05:23Z
dc.date.available.none.fl_str_mv 2022-09-08T14:05:23Z
dc.date.issued.fl_str_mv 2022-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1109/ICACITE53722.2022.9823933
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/660901
dc.identifier.journal.es_PE.fl_str_mv 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022
dc.identifier.eid.none.fl_str_mv 2-s2.0-85135472454
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85135472454
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.1109/ICACITE53722.2022.9823933
2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022
2-s2.0-85135472454
SCOPUS_ID:85135472454
0000 0001 2196 144X
url http://hdl.handle.net/10757/660901
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://ieeexplore.ieee.org/document/9823933
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.es_PE.fl_str_mv Repositorio Academico - UPC
Universidad Peruana de Ciencias Aplicadas (UPC)
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022
dc.source.beginpage.none.fl_str_mv 2458
dc.source.endpage.none.fl_str_mv 2462
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/660901/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846065824229490688
spelling b5df785608d336d7fb27eeac799713de5001cf2f68838fb486964e9873233b476253009f983f688119daea8449e8775cfd93f23006dbf7d6e29c2b4e5d564a11881b642c4300d536e04579d7b8a194c0ee4710ab572d300d9f35fc7c26e343e118f00cc1358d284300Vives, LuisBasha, N. KhadarPoonamGehlot, AnitaChole, VikrantPant, Kumud2022-09-08T14:05:23Z2022-09-08T14:05:23Z2022-01-0110.1109/ICACITE53722.2022.9823933http://hdl.handle.net/10757/6609012022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 20222-s2.0-85135472454SCOPUS_ID:851354724540000 0001 2196 144Xso, machine learning techniques are being developed to improve performance and maintenance prediction. Increasing our knowledge of the relationship between humans and algorithms, Because data is so valuable, improving strategies for intelligently having to manage the now-ubiquitous content infrastructures is a necessary part of the process toward completely autonomous agents. Numerous researchers recently developed numerous computer-aided diagnostic algorithms employing various supervised learning approaches. Early identification of sickness may help to reduce the number of people who die as a result of these illnesses. Using machine learning techniques, this research creates an efficient automated illness diagnostic algorithm. We chose three key disorders in this paper: coronavirus, cardiovascular diseases, and diabetes. The data are inputted into a mobile application in the suggested model, the investigation is then done in a real-time dataset that used a pre-trained model machine learning technique trained within the same dataset then implemented in firebase, and lastly, the illness identification result can be seen in the mobile application. Logistic regression is a method of prediction calculationRevisión por paresapplication/htmlengInstitute of Electrical and Electronics Engineers Inc.https://ieeexplore.ieee.org/document/9823933info:eu-repo/semantics/embargoedAccessRepositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 202224582462reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCAlgorithmautomatic assistanceclassificationclusteringData AcquisitionData ManagementData processingData protectiondata wranglingDeep learningHealthcareimputationInternet of thingsInterpretationprobabilitiesregressionSecuritystatisticssupervised learningDevelop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learninginfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/660901/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/660901oai:repositorioacademico.upc.edu.pe:10757/6609012022-09-08 14:05:24.452Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.987529
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).