Develop a Model for Assessing the Most Efficient Diseases Diagnosis using Machine Learning

Descripción del Articulo

so, machine learning techniques are being developed to improve performance and maintenance prediction. Increasing our knowledge of the relationship between humans and algorithms, Because data is so valuable, improving strategies for intelligently having to manage the now-ubiquitous content infrastru...

Descripción completa

Detalles Bibliográficos
Autores: Vives, Luis, Basha, N. Khadar, Poonam, Gehlot, Anita, Chole, Vikrant, Pant, Kumud
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/660901
Enlace del recurso:http://hdl.handle.net/10757/660901
Nivel de acceso:acceso embargado
Materia:Algorithm
automatic assistance
classification
clustering
Data Acquisition
Data Management
Data processing
Data protection
data wrangling
Deep learning
Healthcare
imputation
Internet of things
Interpretation
probabilities
regression
Security
statistics
supervised learning
Descripción
Sumario:so, machine learning techniques are being developed to improve performance and maintenance prediction. Increasing our knowledge of the relationship between humans and algorithms, Because data is so valuable, improving strategies for intelligently having to manage the now-ubiquitous content infrastructures is a necessary part of the process toward completely autonomous agents. Numerous researchers recently developed numerous computer-aided diagnostic algorithms employing various supervised learning approaches. Early identification of sickness may help to reduce the number of people who die as a result of these illnesses. Using machine learning techniques, this research creates an efficient automated illness diagnostic algorithm. We chose three key disorders in this paper: coronavirus, cardiovascular diseases, and diabetes. The data are inputted into a mobile application in the suggested model, the investigation is then done in a real-time dataset that used a pre-trained model machine learning technique trained within the same dataset then implemented in firebase, and lastly, the illness identification result can be seen in the mobile application. Logistic regression is a method of prediction calculation
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).