Neural Networks for Tea Leaf Classification

Descripción del Articulo

The process of classification of the raw material, is one of the most important procedures in any tea dryer, being responsible for ensuring a good quality of the final product. Currently, this process in most tea processing companies is usually handled by an expert, who performs the work manually an...

Descripción completa

Detalles Bibliográficos
Autores: Silva, Jesús, Hernández Palma, Hugo, Niebles Núẽz, William, Ruiz-Lazaro, Alex, Varela, Noel
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/652130
Enlace del recurso:http://hdl.handle.net/10757/652130
Nivel de acceso:acceso abierto
Materia:Dryers (equipment)
Neural networks
Development and testing
K-means
Leaf classification
Tea processing
Tea
id UUPC_33a3053f0562cb7266839a7cd199062a
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/652130
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.en_US.fl_str_mv Neural Networks for Tea Leaf Classification
title Neural Networks for Tea Leaf Classification
spellingShingle Neural Networks for Tea Leaf Classification
Silva, Jesús
Dryers (equipment)
Neural networks
Development and testing
K-means
Leaf classification
Tea processing
Tea
title_short Neural Networks for Tea Leaf Classification
title_full Neural Networks for Tea Leaf Classification
title_fullStr Neural Networks for Tea Leaf Classification
title_full_unstemmed Neural Networks for Tea Leaf Classification
title_sort Neural Networks for Tea Leaf Classification
author Silva, Jesús
author_facet Silva, Jesús
Hernández Palma, Hugo
Niebles Núẽz, William
Ruiz-Lazaro, Alex
Varela, Noel
author_role author
author2 Hernández Palma, Hugo
Niebles Núẽz, William
Ruiz-Lazaro, Alex
Varela, Noel
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Silva, Jesús
Hernández Palma, Hugo
Niebles Núẽz, William
Ruiz-Lazaro, Alex
Varela, Noel
dc.subject.en_US.fl_str_mv Dryers (equipment)
Neural networks
Development and testing
K-means
Leaf classification
Tea processing
Tea
topic Dryers (equipment)
Neural networks
Development and testing
K-means
Leaf classification
Tea processing
Tea
description The process of classification of the raw material, is one of the most important procedures in any tea dryer, being responsible for ensuring a good quality of the final product. Currently, this process in most tea processing companies is usually handled by an expert, who performs the work manually and at his own discretion, which has a number of associated drawbacks. In this work, a solution is proposed that includes the planting, design, development and testing of a prototype that is able to correctly classify photographs corresponding to samples of raw material arrived at a dryer, using intelligence techniques (IA) type supervised for Classification by Artificial Neural Networks and not supervised with K-means Grouping for class preparation. The prototype performed well and is a reliable tool for classifying the raw material slammed into tea dryers.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-06-30T20:10:20Z
dc.date.available.none.fl_str_mv 2020-06-30T20:10:20Z
dc.date.issued.fl_str_mv 2020-01-07
dc.type.en_US.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1432/1/012075
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/652130
dc.identifier.eissn.none.fl_str_mv 17426596
dc.identifier.journal.en_US.fl_str_mv Journal of Physics: Conference Series
dc.identifier.eid.none.fl_str_mv 2-s2.0-85079102183
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85079102183
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 17426588
10.1088/1742-6596/1432/1/012075
17426596
Journal of Physics: Conference Series
2-s2.0-85079102183
SCOPUS_ID:85079102183
0000 0001 2196 144X
url http://hdl.handle.net/10757/652130
dc.language.iso.en_US.fl_str_mv eng
language eng
dc.relation.url.en_US.fl_str_mv https://iopscience.iop.org/article/10.1088/1742-6596/1432/1/012075
dc.rights.en_US.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.en_US.fl_str_mv application/pdf
dc.publisher.en_US.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Journal of Physics: Conference Series
dc.source.volume.none.fl_str_mv 1432
dc.source.issue.none.fl_str_mv 1
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/652130/5/1010881742-659614321012075.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/652130/4/1010881742-659614321012075.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/652130/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/652130/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/652130/1/1010881742-659614321012075.pdf
bitstream.checksum.fl_str_mv e87da31b1353f4959c9abc9661a34aa7
ffa25a8b38f9c0e67f635f455d094af8
8a4605be74aa9ea9d79846c1fba20a33
934f4ca17e109e0a05eaeaba504d7ce4
c5b3c193f1e6430d2a88b8238af8ba95
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837188243329646592
spelling 4dc0aefbea6d494fa03e7acf0e5b069930070c0843e406fa4d4e04ee178a790e187300b547fd60ecb3cb34e467d8346b3bdb04300a294c767992ddd73209a19839f2b866e3001b0084486128023a07da0236300a503b300Silva, JesúsHernández Palma, HugoNiebles Núẽz, WilliamRuiz-Lazaro, AlexVarela, Noel2020-06-30T20:10:20Z2020-06-30T20:10:20Z2020-01-071742658810.1088/1742-6596/1432/1/012075http://hdl.handle.net/10757/65213017426596Journal of Physics: Conference Series2-s2.0-85079102183SCOPUS_ID:850791021830000 0001 2196 144XThe process of classification of the raw material, is one of the most important procedures in any tea dryer, being responsible for ensuring a good quality of the final product. Currently, this process in most tea processing companies is usually handled by an expert, who performs the work manually and at his own discretion, which has a number of associated drawbacks. In this work, a solution is proposed that includes the planting, design, development and testing of a prototype that is able to correctly classify photographs corresponding to samples of raw material arrived at a dryer, using intelligence techniques (IA) type supervised for Classification by Artificial Neural Networks and not supervised with K-means Grouping for class preparation. The prototype performed well and is a reliable tool for classifying the raw material slammed into tea dryers.application/pdfengInstitute of Physics Publishinghttps://iopscience.iop.org/article/10.1088/1742-6596/1432/1/012075info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Dryers (equipment)Neural networksDevelopment and testingK-meansLeaf classificationTea processingTeaNeural Networks for Tea Leaf Classificationinfo:eu-repo/semantics/articleJournal of Physics: Conference Series14321reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2020-06-30T20:10:22ZTHUMBNAIL1010881742-659614321012075.pdf.jpg1010881742-659614321012075.pdf.jpgGenerated Thumbnailimage/jpeg52963https://repositorioacademico.upc.edu.pe/bitstream/10757/652130/5/1010881742-659614321012075.pdf.jpge87da31b1353f4959c9abc9661a34aa7MD55falseTEXT1010881742-659614321012075.pdf.txt1010881742-659614321012075.pdf.txtExtracted texttext/plain24880https://repositorioacademico.upc.edu.pe/bitstream/10757/652130/4/1010881742-659614321012075.pdf.txtffa25a8b38f9c0e67f635f455d094af8MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/652130/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/652130/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL1010881742-659614321012075.pdf1010881742-659614321012075.pdfapplication/pdf799029https://repositorioacademico.upc.edu.pe/bitstream/10757/652130/1/1010881742-659614321012075.pdfc5b3c193f1e6430d2a88b8238af8ba95MD51true10757/652130oai:repositorioacademico.upc.edu.pe:10757/6521302020-07-01 03:21:15.863Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.971837
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).