An Electronic Equipment for Automatic Identification of Forest Seed Species
Descripción del Articulo
This work proposes an electronic equipment which identifies forest seeds for academic and research purposes. Existing integral solutions are prohibitively costly for silviculture laboratories used in forestry teaching. Thus, they must identify the seed by visual inspection, causing visual fatigue an...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/668097 |
Enlace del recurso: | http://hdl.handle.net/10757/668097 |
Nivel de acceso: | acceso embargado |
Materia: | CNN Electronic equipment Forest seeds Identification Image processing Forest Seed Identification Electronic Equipment Silviculture Laboratories Visual Inspection Support Vector Machines Morphological Attributes Image Acquisition Enclosure Electromechanical Device Single-board Computer Convolutional Neural Network |
Sumario: | This work proposes an electronic equipment which identifies forest seeds for academic and research purposes. Existing integral solutions are prohibitively costly for silviculture laboratories used in forestry teaching. Thus, they must identify the seed by visual inspection, causing visual fatigue and results with low reliability. The state of the art proposes solutions using support vector machines, achieving a 98.82% accuracy for sunflower seeds. Other solutions extract morphological attributes of mussel seeds to identify up to 5 species with an accuracy of 95%. Most solutions only identify a single seed type with similar sizes. In this context, an electronic equipment is developed. It consists of an image acquisition enclosure, an electromechanical device to move a camera so different sizes of seeds can be imaged at different distances, and a single-board computer to control the image processing and artificial intelligence (convolutional neural network) algorithms. The equipment achieves an accuracy of 95%, which is satisfactory for potential users and silviculture specialists. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).