An Electronic Equipment for Automatic Identification of Forest Seed Species

Descripción del Articulo

This work proposes an electronic equipment which identifies forest seeds for academic and research purposes. Existing integral solutions are prohibitively costly for silviculture laboratories used in forestry teaching. Thus, they must identify the seed by visual inspection, causing visual fatigue an...

Descripción completa

Detalles Bibliográficos
Autores: Tupac, Miguel, Armas, Reiner, Kemper, Guillermo
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/668097
Enlace del recurso:http://hdl.handle.net/10757/668097
Nivel de acceso:acceso embargado
Materia:CNN
Electronic equipment
Forest seeds
Identification
Image processing
Forest Seed Identification
Electronic Equipment
Silviculture Laboratories
Visual Inspection
Support Vector Machines
Morphological Attributes
Image Acquisition Enclosure
Electromechanical Device
Single-board Computer
Convolutional Neural Network
Descripción
Sumario:This work proposes an electronic equipment which identifies forest seeds for academic and research purposes. Existing integral solutions are prohibitively costly for silviculture laboratories used in forestry teaching. Thus, they must identify the seed by visual inspection, causing visual fatigue and results with low reliability. The state of the art proposes solutions using support vector machines, achieving a 98.82% accuracy for sunflower seeds. Other solutions extract morphological attributes of mussel seeds to identify up to 5 species with an accuracy of 95%. Most solutions only identify a single seed type with similar sizes. In this context, an electronic equipment is developed. It consists of an image acquisition enclosure, an electromechanical device to move a camera so different sizes of seeds can be imaged at different distances, and a single-board computer to control the image processing and artificial intelligence (convolutional neural network) algorithms. The equipment achieves an accuracy of 95%, which is satisfactory for potential users and silviculture specialists.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).