An Electronic Equipment for Automatic Identification of Forest Seed Species
Descripción del Articulo
This work proposes an electronic equipment which identifies forest seeds for academic and research purposes. Existing integral solutions are prohibitively costly for silviculture laboratories used in forestry teaching. Thus, they must identify the seed by visual inspection, causing visual fatigue an...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/668097 |
Enlace del recurso: | http://hdl.handle.net/10757/668097 |
Nivel de acceso: | acceso embargado |
Materia: | CNN Electronic equipment Forest seeds Identification Image processing Forest Seed Identification Electronic Equipment Silviculture Laboratories Visual Inspection Support Vector Machines Morphological Attributes Image Acquisition Enclosure Electromechanical Device Single-board Computer Convolutional Neural Network |
id |
UUPC_31b5fdd48284bd78bf6e657ac51b4221 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/668097 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
An Electronic Equipment for Automatic Identification of Forest Seed Species |
title |
An Electronic Equipment for Automatic Identification of Forest Seed Species |
spellingShingle |
An Electronic Equipment for Automatic Identification of Forest Seed Species Tupac, Miguel CNN Electronic equipment Forest seeds Identification Image processing Forest Seed Identification Electronic Equipment Silviculture Laboratories Visual Inspection Support Vector Machines Morphological Attributes Image Acquisition Enclosure Electromechanical Device Single-board Computer Convolutional Neural Network |
title_short |
An Electronic Equipment for Automatic Identification of Forest Seed Species |
title_full |
An Electronic Equipment for Automatic Identification of Forest Seed Species |
title_fullStr |
An Electronic Equipment for Automatic Identification of Forest Seed Species |
title_full_unstemmed |
An Electronic Equipment for Automatic Identification of Forest Seed Species |
title_sort |
An Electronic Equipment for Automatic Identification of Forest Seed Species |
author |
Tupac, Miguel |
author_facet |
Tupac, Miguel Armas, Reiner Kemper, Guillermo |
author_role |
author |
author2 |
Armas, Reiner Kemper, Guillermo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Tupac, Miguel Armas, Reiner Kemper, Guillermo |
dc.subject.es_PE.fl_str_mv |
CNN Electronic equipment Forest seeds Identification Image processing Forest Seed Identification Electronic Equipment Silviculture Laboratories Visual Inspection Support Vector Machines Morphological Attributes Image Acquisition Enclosure Electromechanical Device Single-board Computer Convolutional Neural Network |
topic |
CNN Electronic equipment Forest seeds Identification Image processing Forest Seed Identification Electronic Equipment Silviculture Laboratories Visual Inspection Support Vector Machines Morphological Attributes Image Acquisition Enclosure Electromechanical Device Single-board Computer Convolutional Neural Network |
description |
This work proposes an electronic equipment which identifies forest seeds for academic and research purposes. Existing integral solutions are prohibitively costly for silviculture laboratories used in forestry teaching. Thus, they must identify the seed by visual inspection, causing visual fatigue and results with low reliability. The state of the art proposes solutions using support vector machines, achieving a 98.82% accuracy for sunflower seeds. Other solutions extract morphological attributes of mussel seeds to identify up to 5 species with an accuracy of 95%. Most solutions only identify a single seed type with similar sizes. In this context, an electronic equipment is developed. It consists of an image acquisition enclosure, an electromechanical device to move a camera so different sizes of seeds can be imaged at different distances, and a single-board computer to control the image processing and artificial intelligence (convolutional neural network) algorithms. The equipment achieves an accuracy of 95%, which is satisfactory for potential users and silviculture specialists. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-06-29T23:44:27Z |
dc.date.available.none.fl_str_mv |
2023-06-29T23:44:27Z |
dc.date.issued.fl_str_mv |
2023-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
18650929 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-031-24985-3_10 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/668097 |
dc.identifier.eissn.none.fl_str_mv |
18650937 |
dc.identifier.journal.es_PE.fl_str_mv |
Communications in Computer and Information Science |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85147991646 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85147991646 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
18650929 10.1007/978-3-031-24985-3_10 18650937 Communications in Computer and Information Science 2-s2.0-85147991646 SCOPUS_ID:85147991646 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/668097 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-3-031-24985-3_10 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.es_PE.fl_str_mv |
application/html |
dc.publisher.es_PE.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Communications in Computer and Information Science |
dc.source.volume.none.fl_str_mv |
1755 CCIS |
dc.source.beginpage.none.fl_str_mv |
130 |
dc.source.endpage.none.fl_str_mv |
142 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/668097/1/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837186780738093056 |
spelling |
791d634d10b8f509a81903190c5d88f6ad0a56a9eb4668c0c56f526e87d1f3a581a224b2a512525985a4d85a3aa8658f500Tupac, MiguelArmas, ReinerKemper, Guillermo2023-06-29T23:44:27Z2023-06-29T23:44:27Z2023-01-011865092910.1007/978-3-031-24985-3_10http://hdl.handle.net/10757/66809718650937Communications in Computer and Information Science2-s2.0-85147991646SCOPUS_ID:851479916460000 0001 2196 144XThis work proposes an electronic equipment which identifies forest seeds for academic and research purposes. Existing integral solutions are prohibitively costly for silviculture laboratories used in forestry teaching. Thus, they must identify the seed by visual inspection, causing visual fatigue and results with low reliability. The state of the art proposes solutions using support vector machines, achieving a 98.82% accuracy for sunflower seeds. Other solutions extract morphological attributes of mussel seeds to identify up to 5 species with an accuracy of 95%. Most solutions only identify a single seed type with similar sizes. In this context, an electronic equipment is developed. It consists of an image acquisition enclosure, an electromechanical device to move a camera so different sizes of seeds can be imaged at different distances, and a single-board computer to control the image processing and artificial intelligence (convolutional neural network) algorithms. The equipment achieves an accuracy of 95%, which is satisfactory for potential users and silviculture specialists.ODS 15: Vida de Ecosistemas TerrestresODS 9: Industria, Innovación e InfraestructuraODS 4: Educación de Calidadapplication/htmlengSpringer Science and Business Media Deutschland GmbHhttps://link.springer.com/chapter/10.1007/978-3-031-24985-3_10info:eu-repo/semantics/embargoedAccessCNNElectronic equipmentForest seedsIdentificationImage processingForest Seed IdentificationElectronic EquipmentSilviculture LaboratoriesVisual InspectionSupport Vector MachinesMorphological AttributesImage Acquisition EnclosureElectromechanical DeviceSingle-board ComputerConvolutional Neural NetworkAn Electronic Equipment for Automatic Identification of Forest Seed Speciesinfo:eu-repo/semantics/articleCommunications in Computer and Information Science1755 CCIS130142reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/668097/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/668097oai:repositorioacademico.upc.edu.pe:10757/6680972024-07-20 10:24:51.933Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.919782 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).