An Electronic Equipment for Automatic Identification of Forest Seed Species

Descripción del Articulo

This work proposes an electronic equipment which identifies forest seeds for academic and research purposes. Existing integral solutions are prohibitively costly for silviculture laboratories used in forestry teaching. Thus, they must identify the seed by visual inspection, causing visual fatigue an...

Descripción completa

Detalles Bibliográficos
Autores: Tupac, Miguel, Armas, Reiner, Kemper, Guillermo
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/668097
Enlace del recurso:http://hdl.handle.net/10757/668097
Nivel de acceso:acceso embargado
Materia:CNN
Electronic equipment
Forest seeds
Identification
Image processing
Forest Seed Identification
Electronic Equipment
Silviculture Laboratories
Visual Inspection
Support Vector Machines
Morphological Attributes
Image Acquisition Enclosure
Electromechanical Device
Single-board Computer
Convolutional Neural Network
id UUPC_31b5fdd48284bd78bf6e657ac51b4221
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/668097
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv An Electronic Equipment for Automatic Identification of Forest Seed Species
title An Electronic Equipment for Automatic Identification of Forest Seed Species
spellingShingle An Electronic Equipment for Automatic Identification of Forest Seed Species
Tupac, Miguel
CNN
Electronic equipment
Forest seeds
Identification
Image processing
Forest Seed Identification
Electronic Equipment
Silviculture Laboratories
Visual Inspection
Support Vector Machines
Morphological Attributes
Image Acquisition Enclosure
Electromechanical Device
Single-board Computer
Convolutional Neural Network
title_short An Electronic Equipment for Automatic Identification of Forest Seed Species
title_full An Electronic Equipment for Automatic Identification of Forest Seed Species
title_fullStr An Electronic Equipment for Automatic Identification of Forest Seed Species
title_full_unstemmed An Electronic Equipment for Automatic Identification of Forest Seed Species
title_sort An Electronic Equipment for Automatic Identification of Forest Seed Species
author Tupac, Miguel
author_facet Tupac, Miguel
Armas, Reiner
Kemper, Guillermo
author_role author
author2 Armas, Reiner
Kemper, Guillermo
author2_role author
author
dc.contributor.author.fl_str_mv Tupac, Miguel
Armas, Reiner
Kemper, Guillermo
dc.subject.es_PE.fl_str_mv CNN
Electronic equipment
Forest seeds
Identification
Image processing
Forest Seed Identification
Electronic Equipment
Silviculture Laboratories
Visual Inspection
Support Vector Machines
Morphological Attributes
Image Acquisition Enclosure
Electromechanical Device
Single-board Computer
Convolutional Neural Network
topic CNN
Electronic equipment
Forest seeds
Identification
Image processing
Forest Seed Identification
Electronic Equipment
Silviculture Laboratories
Visual Inspection
Support Vector Machines
Morphological Attributes
Image Acquisition Enclosure
Electromechanical Device
Single-board Computer
Convolutional Neural Network
description This work proposes an electronic equipment which identifies forest seeds for academic and research purposes. Existing integral solutions are prohibitively costly for silviculture laboratories used in forestry teaching. Thus, they must identify the seed by visual inspection, causing visual fatigue and results with low reliability. The state of the art proposes solutions using support vector machines, achieving a 98.82% accuracy for sunflower seeds. Other solutions extract morphological attributes of mussel seeds to identify up to 5 species with an accuracy of 95%. Most solutions only identify a single seed type with similar sizes. In this context, an electronic equipment is developed. It consists of an image acquisition enclosure, an electromechanical device to move a camera so different sizes of seeds can be imaged at different distances, and a single-board computer to control the image processing and artificial intelligence (convolutional neural network) algorithms. The equipment achieves an accuracy of 95%, which is satisfactory for potential users and silviculture specialists.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-29T23:44:27Z
dc.date.available.none.fl_str_mv 2023-06-29T23:44:27Z
dc.date.issued.fl_str_mv 2023-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-031-24985-3_10
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/668097
dc.identifier.eissn.none.fl_str_mv 18650937
dc.identifier.journal.es_PE.fl_str_mv Communications in Computer and Information Science
dc.identifier.eid.none.fl_str_mv 2-s2.0-85147991646
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85147991646
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 18650929
10.1007/978-3-031-24985-3_10
18650937
Communications in Computer and Information Science
2-s2.0-85147991646
SCOPUS_ID:85147991646
0000 0001 2196 144X
url http://hdl.handle.net/10757/668097
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-031-24985-3_10
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Communications in Computer and Information Science
dc.source.volume.none.fl_str_mv 1755 CCIS
dc.source.beginpage.none.fl_str_mv 130
dc.source.endpage.none.fl_str_mv 142
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/668097/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837186780738093056
spelling 791d634d10b8f509a81903190c5d88f6ad0a56a9eb4668c0c56f526e87d1f3a581a224b2a512525985a4d85a3aa8658f500Tupac, MiguelArmas, ReinerKemper, Guillermo2023-06-29T23:44:27Z2023-06-29T23:44:27Z2023-01-011865092910.1007/978-3-031-24985-3_10http://hdl.handle.net/10757/66809718650937Communications in Computer and Information Science2-s2.0-85147991646SCOPUS_ID:851479916460000 0001 2196 144XThis work proposes an electronic equipment which identifies forest seeds for academic and research purposes. Existing integral solutions are prohibitively costly for silviculture laboratories used in forestry teaching. Thus, they must identify the seed by visual inspection, causing visual fatigue and results with low reliability. The state of the art proposes solutions using support vector machines, achieving a 98.82% accuracy for sunflower seeds. Other solutions extract morphological attributes of mussel seeds to identify up to 5 species with an accuracy of 95%. Most solutions only identify a single seed type with similar sizes. In this context, an electronic equipment is developed. It consists of an image acquisition enclosure, an electromechanical device to move a camera so different sizes of seeds can be imaged at different distances, and a single-board computer to control the image processing and artificial intelligence (convolutional neural network) algorithms. The equipment achieves an accuracy of 95%, which is satisfactory for potential users and silviculture specialists.ODS 15: Vida de Ecosistemas TerrestresODS 9: Industria, Innovación e InfraestructuraODS 4: Educación de Calidadapplication/htmlengSpringer Science and Business Media Deutschland GmbHhttps://link.springer.com/chapter/10.1007/978-3-031-24985-3_10info:eu-repo/semantics/embargoedAccessCNNElectronic equipmentForest seedsIdentificationImage processingForest Seed IdentificationElectronic EquipmentSilviculture LaboratoriesVisual InspectionSupport Vector MachinesMorphological AttributesImage Acquisition EnclosureElectromechanical DeviceSingle-board ComputerConvolutional Neural NetworkAn Electronic Equipment for Automatic Identification of Forest Seed Speciesinfo:eu-repo/semantics/articleCommunications in Computer and Information Science1755 CCIS130142reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/668097/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/668097oai:repositorioacademico.upc.edu.pe:10757/6680972024-07-20 10:24:51.933Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.919782
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).