A system for detecting objects and estimating their distance using a neural network

Descripción del Articulo

This article proposes using neural networks to solve the challenge of accurately measuring the distance of an object using cameras and digital image processing. For this, a neural network was trained using a data set that includes information on the distance in pixels of the centers of mass of the o...

Descripción completa

Detalles Bibliográficos
Autores: Salcedo, Joan, Ramos, Nehemias, Vinces, Leonardo, Vargas, Dante
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/673068
Enlace del recurso:http://hdl.handle.net/10757/673068
Nivel de acceso:acceso embargado
Materia:Distance
Image Processing
Mass Center
Neural Networks
Object Detection
Raspberry
YOLOv8
id UUPC_2cd016427e6ea94e4b9e48af1dacdd04
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/673068
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv A system for detecting objects and estimating their distance using a neural network
title A system for detecting objects and estimating their distance using a neural network
spellingShingle A system for detecting objects and estimating their distance using a neural network
Salcedo, Joan
Distance
Image Processing
Mass Center
Neural Networks
Object Detection
Raspberry
YOLOv8
title_short A system for detecting objects and estimating their distance using a neural network
title_full A system for detecting objects and estimating their distance using a neural network
title_fullStr A system for detecting objects and estimating their distance using a neural network
title_full_unstemmed A system for detecting objects and estimating their distance using a neural network
title_sort A system for detecting objects and estimating their distance using a neural network
author Salcedo, Joan
author_facet Salcedo, Joan
Ramos, Nehemias
Vinces, Leonardo
Vargas, Dante
author_role author
author2 Ramos, Nehemias
Vinces, Leonardo
Vargas, Dante
author2_role author
author
author
dc.contributor.author.fl_str_mv Salcedo, Joan
Ramos, Nehemias
Vinces, Leonardo
Vargas, Dante
dc.subject.es_PE.fl_str_mv Distance
Image Processing
Mass Center
Neural Networks
Object Detection
Raspberry
YOLOv8
topic Distance
Image Processing
Mass Center
Neural Networks
Object Detection
Raspberry
YOLOv8
description This article proposes using neural networks to solve the challenge of accurately measuring the distance of an object using cameras and digital image processing. For this, a neural network was trained using a data set that includes information on the distance in pixels of the centers of mass of the object detected by the cameras. This data was used to teach the network to make an accurate estimate of the actual distance of the object. Image analysis methods were also used in conjunction with images of the object previously captured and trained with YoloV8 on Roboflow. The results obtained showed a notable improvement in the precision that is obtained when measuring the distance without the tedious calibration that is had in the other approaches considered for this investigation. Overcame the challenges associated with camera calibration due to possible distortion, accuracy, and generalization generated by changing the environment, resulting in an effective solution with 90% accuracy percentage and a dense neural network with an input layer, a hidden layer and an output layer with 2000 training cycles. These results demonstrate the potential of neural networks and image processing to address distance measurement problems in various applications, such as robotics, road safety, and autonomous navigation.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-03-16T23:07:40Z
dc.date.available.none.fl_str_mv 2024-03-16T23:07:40Z
dc.date.issued.fl_str_mv 2023-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1109/INTERCON59652.2023.10326063
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/673068
dc.identifier.journal.es_PE.fl_str_mv Proceedings of the 2023 IEEE 30th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2023
dc.identifier.eid.none.fl_str_mv 2-s2.0-85179888506
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85179888506
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.1109/INTERCON59652.2023.10326063
Proceedings of the 2023 IEEE 30th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2023
2-s2.0-85179888506
SCOPUS_ID:85179888506
0000 0001 2196 144X
url http://hdl.handle.net/10757/673068
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Academico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Proceedings of the 2023 IEEE 30th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2023
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/673068/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837186888376516608
spelling 4809556b8a992aaf87b19eeb704a81093006ebded2d2a2b21cf70e5ef88bd17e22430060e18754863e92f130edcf7adad97c84500ebde67d9e2f81e7a7f94be8d7c617c7f500Salcedo, JoanRamos, NehemiasVinces, LeonardoVargas, Dante2024-03-16T23:07:40Z2024-03-16T23:07:40Z2023-01-0110.1109/INTERCON59652.2023.10326063http://hdl.handle.net/10757/673068Proceedings of the 2023 IEEE 30th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 20232-s2.0-85179888506SCOPUS_ID:851798885060000 0001 2196 144XThis article proposes using neural networks to solve the challenge of accurately measuring the distance of an object using cameras and digital image processing. For this, a neural network was trained using a data set that includes information on the distance in pixels of the centers of mass of the object detected by the cameras. This data was used to teach the network to make an accurate estimate of the actual distance of the object. Image analysis methods were also used in conjunction with images of the object previously captured and trained with YoloV8 on Roboflow. The results obtained showed a notable improvement in the precision that is obtained when measuring the distance without the tedious calibration that is had in the other approaches considered for this investigation. Overcame the challenges associated with camera calibration due to possible distortion, accuracy, and generalization generated by changing the environment, resulting in an effective solution with 90% accuracy percentage and a dense neural network with an input layer, a hidden layer and an output layer with 2000 training cycles. These results demonstrate the potential of neural networks and image processing to address distance measurement problems in various applications, such as robotics, road safety, and autonomous navigation.ODS 9: Industria, Innovación e InfraestructuraODS 11: Ciudades y Comunidades SosteniblesODS 4: Educación de Calidadapplication/htmlengInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCProceedings of the 2023 IEEE 30th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2023reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCDistanceImage ProcessingMass CenterNeural NetworksObject DetectionRaspberryYOLOv8A system for detecting objects and estimating their distance using a neural networkinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/673068/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/673068oai:repositorioacademico.upc.edu.pe:10757/6730682024-07-20 10:28:44.551Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.959421
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).