A system for detecting objects and estimating their distance using a neural network
Descripción del Articulo
This article proposes using neural networks to solve the challenge of accurately measuring the distance of an object using cameras and digital image processing. For this, a neural network was trained using a data set that includes information on the distance in pixels of the centers of mass of the o...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/673068 |
Enlace del recurso: | http://hdl.handle.net/10757/673068 |
Nivel de acceso: | acceso embargado |
Materia: | Distance Image Processing Mass Center Neural Networks Object Detection Raspberry YOLOv8 |
id |
UUPC_2cd016427e6ea94e4b9e48af1dacdd04 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/673068 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
A system for detecting objects and estimating their distance using a neural network |
title |
A system for detecting objects and estimating their distance using a neural network |
spellingShingle |
A system for detecting objects and estimating their distance using a neural network Salcedo, Joan Distance Image Processing Mass Center Neural Networks Object Detection Raspberry YOLOv8 |
title_short |
A system for detecting objects and estimating their distance using a neural network |
title_full |
A system for detecting objects and estimating their distance using a neural network |
title_fullStr |
A system for detecting objects and estimating their distance using a neural network |
title_full_unstemmed |
A system for detecting objects and estimating their distance using a neural network |
title_sort |
A system for detecting objects and estimating their distance using a neural network |
author |
Salcedo, Joan |
author_facet |
Salcedo, Joan Ramos, Nehemias Vinces, Leonardo Vargas, Dante |
author_role |
author |
author2 |
Ramos, Nehemias Vinces, Leonardo Vargas, Dante |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Salcedo, Joan Ramos, Nehemias Vinces, Leonardo Vargas, Dante |
dc.subject.es_PE.fl_str_mv |
Distance Image Processing Mass Center Neural Networks Object Detection Raspberry YOLOv8 |
topic |
Distance Image Processing Mass Center Neural Networks Object Detection Raspberry YOLOv8 |
description |
This article proposes using neural networks to solve the challenge of accurately measuring the distance of an object using cameras and digital image processing. For this, a neural network was trained using a data set that includes information on the distance in pixels of the centers of mass of the object detected by the cameras. This data was used to teach the network to make an accurate estimate of the actual distance of the object. Image analysis methods were also used in conjunction with images of the object previously captured and trained with YoloV8 on Roboflow. The results obtained showed a notable improvement in the precision that is obtained when measuring the distance without the tedious calibration that is had in the other approaches considered for this investigation. Overcame the challenges associated with camera calibration due to possible distortion, accuracy, and generalization generated by changing the environment, resulting in an effective solution with 90% accuracy percentage and a dense neural network with an input layer, a hidden layer and an output layer with 2000 training cycles. These results demonstrate the potential of neural networks and image processing to address distance measurement problems in various applications, such as robotics, road safety, and autonomous navigation. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-03-16T23:07:40Z |
dc.date.available.none.fl_str_mv |
2024-03-16T23:07:40Z |
dc.date.issued.fl_str_mv |
2023-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.1109/INTERCON59652.2023.10326063 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/673068 |
dc.identifier.journal.es_PE.fl_str_mv |
Proceedings of the 2023 IEEE 30th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2023 |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85179888506 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85179888506 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
10.1109/INTERCON59652.2023.10326063 Proceedings of the 2023 IEEE 30th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2023 2-s2.0-85179888506 SCOPUS_ID:85179888506 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/673068 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.es_PE.fl_str_mv |
application/html |
dc.publisher.es_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Academico - UPC |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Proceedings of the 2023 IEEE 30th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2023 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/673068/1/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837186888376516608 |
spelling |
4809556b8a992aaf87b19eeb704a81093006ebded2d2a2b21cf70e5ef88bd17e22430060e18754863e92f130edcf7adad97c84500ebde67d9e2f81e7a7f94be8d7c617c7f500Salcedo, JoanRamos, NehemiasVinces, LeonardoVargas, Dante2024-03-16T23:07:40Z2024-03-16T23:07:40Z2023-01-0110.1109/INTERCON59652.2023.10326063http://hdl.handle.net/10757/673068Proceedings of the 2023 IEEE 30th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 20232-s2.0-85179888506SCOPUS_ID:851798885060000 0001 2196 144XThis article proposes using neural networks to solve the challenge of accurately measuring the distance of an object using cameras and digital image processing. For this, a neural network was trained using a data set that includes information on the distance in pixels of the centers of mass of the object detected by the cameras. This data was used to teach the network to make an accurate estimate of the actual distance of the object. Image analysis methods were also used in conjunction with images of the object previously captured and trained with YoloV8 on Roboflow. The results obtained showed a notable improvement in the precision that is obtained when measuring the distance without the tedious calibration that is had in the other approaches considered for this investigation. Overcame the challenges associated with camera calibration due to possible distortion, accuracy, and generalization generated by changing the environment, resulting in an effective solution with 90% accuracy percentage and a dense neural network with an input layer, a hidden layer and an output layer with 2000 training cycles. These results demonstrate the potential of neural networks and image processing to address distance measurement problems in various applications, such as robotics, road safety, and autonomous navigation.ODS 9: Industria, Innovación e InfraestructuraODS 11: Ciudades y Comunidades SosteniblesODS 4: Educación de Calidadapplication/htmlengInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCProceedings of the 2023 IEEE 30th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2023reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCDistanceImage ProcessingMass CenterNeural NetworksObject DetectionRaspberryYOLOv8A system for detecting objects and estimating their distance using a neural networkinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/673068/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/673068oai:repositorioacademico.upc.edu.pe:10757/6730682024-07-20 10:28:44.551Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.959421 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).