Comparing the Future Trend of the Number of Road Accidents in NonMotorized Vehicles Using a Predictive Mathematical Method.

Descripción del Articulo

The article proposes an innovative approach to address the problem of traffic accidents involving non-motorized vehicles through the application of the predictive mathematical method Gray GM (1,1). The study is based on an analysis of historical accident data, considering variables such as location...

Descripción completa

Detalles Bibliográficos
Autores: Chávez, Joaquín, Castro, Luis, Bravo, Aldo
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676162
Enlace del recurso:http://hdl.handle.net/10757/676162
Nivel de acceso:acceso abierto
Materia:bicycle
cycle path
forecast
non-motorized
Road safety
id UUPC_24a16b16b1837c6dd44f8dffaf064ca3
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676162
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Comparing the Future Trend of the Number of Road Accidents in NonMotorized Vehicles Using a Predictive Mathematical Method.
title Comparing the Future Trend of the Number of Road Accidents in NonMotorized Vehicles Using a Predictive Mathematical Method.
spellingShingle Comparing the Future Trend of the Number of Road Accidents in NonMotorized Vehicles Using a Predictive Mathematical Method.
Chávez, Joaquín
bicycle
cycle path
forecast
non-motorized
Road safety
title_short Comparing the Future Trend of the Number of Road Accidents in NonMotorized Vehicles Using a Predictive Mathematical Method.
title_full Comparing the Future Trend of the Number of Road Accidents in NonMotorized Vehicles Using a Predictive Mathematical Method.
title_fullStr Comparing the Future Trend of the Number of Road Accidents in NonMotorized Vehicles Using a Predictive Mathematical Method.
title_full_unstemmed Comparing the Future Trend of the Number of Road Accidents in NonMotorized Vehicles Using a Predictive Mathematical Method.
title_sort Comparing the Future Trend of the Number of Road Accidents in NonMotorized Vehicles Using a Predictive Mathematical Method.
author Chávez, Joaquín
author_facet Chávez, Joaquín
Castro, Luis
Bravo, Aldo
author_role author
author2 Castro, Luis
Bravo, Aldo
author2_role author
author
dc.contributor.author.fl_str_mv Chávez, Joaquín
Castro, Luis
Bravo, Aldo
dc.subject.es_PE.fl_str_mv bicycle
cycle path
forecast
non-motorized
Road safety
topic bicycle
cycle path
forecast
non-motorized
Road safety
description The article proposes an innovative approach to address the problem of traffic accidents involving non-motorized vehicles through the application of the predictive mathematical method Gray GM (1,1). The study is based on an analysis of historical accident data, considering variables such as location and characteristics of the road. The methodology used to apply the forecast model is described, highlighting the collection and preparation of data, the selection of relevant variables and the construction of the model. Real data was used to predict accident occurrence and underlying trends. The results of the study demonstrated the effectiveness of the proposed infrastructure model using the mathematical prediction model in non-motorized vehicle traffic accidents. Finally, it is concluded that the use of this predictive mathematical model contributes to the implementation of prevention strategies that would be effective in the future. Likewise, a new perspective could be provided to address road safety of non-motorized vehicles, highlighting the importance of anticipating and preventing accidents through the application of predictive mathematical models, which offers a significant contribution to improving safety. on public roads.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-19T11:02:48Z
dc.date.available.none.fl_str_mv 2024-10-19T11:02:48Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.11159/iccste24.160
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676162
dc.identifier.eissn.none.fl_str_mv 23693002
dc.identifier.journal.es_PE.fl_str_mv International Conference on Civil, Structural and Transportation Engineering
dc.identifier.eid.none.fl_str_mv 2-s2.0-85200360629
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85200360629
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.11159/iccste24.160
23693002
International Conference on Civil, Structural and Transportation Engineering
2-s2.0-85200360629
SCOPUS_ID:85200360629
0000 0001 2196 144X
url http://hdl.handle.net/10757/676162
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Avestia Publishing
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv International Conference on Civil, Structural and Transportation Engineering
dc.source.beginpage.none.fl_str_mv 1
dc.source.endpage.none.fl_str_mv 9
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676162/5/ICCSTE_160.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/676162/4/ICCSTE_160.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/676162/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/676162/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/676162/1/ICCSTE_160.pdf
bitstream.checksum.fl_str_mv 6207c19f370bf83d3f9cc8a8a9882468
97158d0331bb3505260c42e7d856871c
8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
900c39824a1431b120c6e2360bdb822d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187183503474688
spelling 4f6b208dee573cd1b523094a75fe33fd3008ad6ff866bbf6143db7476ae0d2df3d6ccedbced7842a7083679c959206055bbChávez, JoaquínCastro, LuisBravo, Aldo2024-10-19T11:02:48Z2024-10-19T11:02:48Z2024-01-0110.11159/iccste24.160http://hdl.handle.net/10757/67616223693002International Conference on Civil, Structural and Transportation Engineering2-s2.0-85200360629SCOPUS_ID:852003606290000 0001 2196 144XThe article proposes an innovative approach to address the problem of traffic accidents involving non-motorized vehicles through the application of the predictive mathematical method Gray GM (1,1). The study is based on an analysis of historical accident data, considering variables such as location and characteristics of the road. The methodology used to apply the forecast model is described, highlighting the collection and preparation of data, the selection of relevant variables and the construction of the model. Real data was used to predict accident occurrence and underlying trends. The results of the study demonstrated the effectiveness of the proposed infrastructure model using the mathematical prediction model in non-motorized vehicle traffic accidents. Finally, it is concluded that the use of this predictive mathematical model contributes to the implementation of prevention strategies that would be effective in the future. Likewise, a new perspective could be provided to address road safety of non-motorized vehicles, highlighting the importance of anticipating and preventing accidents through the application of predictive mathematical models, which offers a significant contribution to improving safety. on public roads.application/pdfengAvestia Publishinginfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/bicyclecycle pathforecastnon-motorizedRoad safetyComparing the Future Trend of the Number of Road Accidents in NonMotorized Vehicles Using a Predictive Mathematical Method.info:eu-repo/semantics/articleInternational Conference on Civil, Structural and Transportation Engineering19reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2024-10-19T11:02:49ZTHUMBNAILICCSTE_160.pdf.jpgICCSTE_160.pdf.jpgGenerated Thumbnailimage/jpeg102315https://repositorioacademico.upc.edu.pe/bitstream/10757/676162/5/ICCSTE_160.pdf.jpg6207c19f370bf83d3f9cc8a8a9882468MD55falseTEXTICCSTE_160.pdf.txtICCSTE_160.pdf.txtExtracted texttext/plain17822https://repositorioacademico.upc.edu.pe/bitstream/10757/676162/4/ICCSTE_160.pdf.txt97158d0331bb3505260c42e7d856871cMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676162/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/676162/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINALICCSTE_160.pdfICCSTE_160.pdfapplication/pdf478102https://repositorioacademico.upc.edu.pe/bitstream/10757/676162/1/ICCSTE_160.pdf900c39824a1431b120c6e2360bdb822dMD51true10757/676162oai:repositorioacademico.upc.edu.pe:10757/6761622024-10-20 04:36:16.574Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).