DeepHistory: A convolutional neural network for automatic animation of museum paintings

Descripción del Articulo

Deep learning models have shown that it is possible to train neural networks to dispense, to a lesser or greater extent, with the need for human intervention for the task of image animation, which helps to reduce not only the production time of these audiovisual pieces, but also presents benefits wi...

Descripción completa

Detalles Bibliográficos
Autores: Ysique-Neciosup, Jose, Mercado-Chavez, Nilton, Ugarte, Willy
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/660896
Enlace del recurso:http://hdl.handle.net/10757/660896
Nivel de acceso:acceso embargado
Materia:convolutional neural network
image animation
keypoints
U-Net
video super-resolution
id UUPC_1b672f09d703beb779cbc0fe559c5922
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/660896
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv DeepHistory: A convolutional neural network for automatic animation of museum paintings
title DeepHistory: A convolutional neural network for automatic animation of museum paintings
spellingShingle DeepHistory: A convolutional neural network for automatic animation of museum paintings
Ysique-Neciosup, Jose
convolutional neural network
image animation
keypoints
U-Net
video super-resolution
title_short DeepHistory: A convolutional neural network for automatic animation of museum paintings
title_full DeepHistory: A convolutional neural network for automatic animation of museum paintings
title_fullStr DeepHistory: A convolutional neural network for automatic animation of museum paintings
title_full_unstemmed DeepHistory: A convolutional neural network for automatic animation of museum paintings
title_sort DeepHistory: A convolutional neural network for automatic animation of museum paintings
author Ysique-Neciosup, Jose
author_facet Ysique-Neciosup, Jose
Mercado-Chavez, Nilton
Ugarte, Willy
author_role author
author2 Mercado-Chavez, Nilton
Ugarte, Willy
author2_role author
author
dc.contributor.author.fl_str_mv Ysique-Neciosup, Jose
Mercado-Chavez, Nilton
Ugarte, Willy
dc.subject.es_PE.fl_str_mv convolutional neural network
image animation
keypoints
U-Net
video super-resolution
topic convolutional neural network
image animation
keypoints
U-Net
video super-resolution
description Deep learning models have shown that it is possible to train neural networks to dispense, to a lesser or greater extent, with the need for human intervention for the task of image animation, which helps to reduce not only the production time of these audiovisual pieces, but also presents benefits with respect to the economic investment they require to be made. However, these models suffer from two common problems: the animations they generate are of very low resolution and they require large amounts of training data to generate good results. To deal with these issues, this article introduces the architectural modification of a state-of-the-art image animation model integrated with a video super-resolution model to make the generated videos more visually pleasing to viewers. Although it is possible to train the animation models with higher resolution images, the time it would take to train them would be much longer, which does not necessarily benefit the quality of the animation, so it is more efficient to complement it with another model focused on improving the animation resolution of the generated video as we demonstrate in our results. We present the design and implementation of a convolutional neural network based on an state-of-art model focused on the image animation task, which is trained with a set of facial data from videos extracted from the YouTube platform. To determine which of all the modifications to the selected state-of-the-art model architecture is better, the results are compared with different metrics that evaluate the performance in image animation and video quality enhancement tasks. The results show that modifying the architecture of the model focused on the detection of characteristic points significantly helps to generate more anatomically and visually attractive videos. In addition, perceptual testing with users shows that using a super-resolution video model as a plugin helps generate more visually appealing videos.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-08T12:17:28Z
dc.date.available.none.fl_str_mv 2022-09-08T12:17:28Z
dc.date.issued.fl_str_mv 2022-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 15464261
dc.identifier.doi.none.fl_str_mv 10.1002/cav.2110
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/660896
dc.identifier.eissn.none.fl_str_mv 1546427X
dc.identifier.journal.es_PE.fl_str_mv Computer Animation and Virtual Worlds
dc.identifier.eid.none.fl_str_mv 2-s2.0-85136901947
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85136901947
identifier_str_mv 15464261
10.1002/cav.2110
1546427X
Computer Animation and Virtual Worlds
2-s2.0-85136901947
SCOPUS_ID:85136901947
url http://hdl.handle.net/10757/660896
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://onlinelibrary.wiley.com/doi/10.1002/cav.2110
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv John Wiley and Sons Ltd
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Computer Animation and Virtual Worlds
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/660896/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837188498002542592
spelling bc2789496b15accaef07ce2b7e6f7fab30029939025b2fd1b04c45b7b45dc4e744e300533fd7e68213307170565ef90452257a500Ysique-Neciosup, JoseMercado-Chavez, NiltonUgarte, Willy2022-09-08T12:17:28Z2022-09-08T12:17:28Z2022-01-011546426110.1002/cav.2110http://hdl.handle.net/10757/6608961546427XComputer Animation and Virtual Worlds2-s2.0-85136901947SCOPUS_ID:85136901947Deep learning models have shown that it is possible to train neural networks to dispense, to a lesser or greater extent, with the need for human intervention for the task of image animation, which helps to reduce not only the production time of these audiovisual pieces, but also presents benefits with respect to the economic investment they require to be made. However, these models suffer from two common problems: the animations they generate are of very low resolution and they require large amounts of training data to generate good results. To deal with these issues, this article introduces the architectural modification of a state-of-the-art image animation model integrated with a video super-resolution model to make the generated videos more visually pleasing to viewers. Although it is possible to train the animation models with higher resolution images, the time it would take to train them would be much longer, which does not necessarily benefit the quality of the animation, so it is more efficient to complement it with another model focused on improving the animation resolution of the generated video as we demonstrate in our results. We present the design and implementation of a convolutional neural network based on an state-of-art model focused on the image animation task, which is trained with a set of facial data from videos extracted from the YouTube platform. To determine which of all the modifications to the selected state-of-the-art model architecture is better, the results are compared with different metrics that evaluate the performance in image animation and video quality enhancement tasks. The results show that modifying the architecture of the model focused on the detection of characteristic points significantly helps to generate more anatomically and visually attractive videos. In addition, perceptual testing with users shows that using a super-resolution video model as a plugin helps generate more visually appealing videos.Revisión por paresapplication/htmlengJohn Wiley and Sons Ltdhttps://onlinelibrary.wiley.com/doi/10.1002/cav.2110info:eu-repo/semantics/embargoedAccessconvolutional neural networkimage animationkeypointsU-Netvideo super-resolutionDeepHistory: A convolutional neural network for automatic animation of museum paintingsinfo:eu-repo/semantics/articleComputer Animation and Virtual Worldsreponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/660896/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/660896oai:repositorioacademico.upc.edu.pe:10757/6608962022-09-08 12:17:29.065Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.754616
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).