Optimización de las dimensiones de placas mediante el uso de IA para reducir los costos en edificios de 6 pisos en el distrito de Miraflores

Descripción del Articulo

En el presente artículo se investiga la implementación de las Redes Neuronales Artificiales como un tipo de Inteligencia Artificial con la finalidad de reducir los costos de concreto armado. Por esto, se propuso el uso de este tipo de algoritmo con el objetivo de optimizar las secciones de los muros...

Descripción completa

Detalles Bibliográficos
Autores: Sanchez Maguiña, Mildred Madeleine, Vidal Feliz, Pool Rusbel
Formato: tesis de grado
Fecha de Publicación:2020
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/652826
Enlace del recurso:http://hdl.handle.net/10757/652826
Nivel de acceso:acceso abierto
Materia:Dimensionamiento de secciones
Redes Neuronales Artificiales
Optimización
Cross section dimensioning
Artificial neuronal network
Descripción
Sumario:En el presente artículo se investiga la implementación de las Redes Neuronales Artificiales como un tipo de Inteligencia Artificial con la finalidad de reducir los costos de concreto armado. Por esto, se propuso el uso de este tipo de algoritmo con el objetivo de optimizar las secciones de los muros de corte en edificaciones de 6 pisos sin irregularidades. Se configuraron 10 redes neuronales distintas con el fin de elegir la que se adapte mejor a los datos empleados para el entrenamiento. En cada algoritmo se establecieron como variables de entrada el ancho y largo de la edificación; y la distancia entre luz máxima del eje X e Y. Sin embargo, el número de capas ocultas y el de neuronas en cada una de ellas fue distinto. En la etapa de entrenamiento se emplearon 30 casos con dimensiones optimizadas, con esto se obtuvo que la red neuronal predice la longitud total de la placa y su espesor con un error del 10%.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).