Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru

Descripción del Articulo

The delinquency rate among clients of banking institutions in Peru has increased exponentially in recent years, due to the lack of early detection of potentially delinquent clients, mainly due to the use of inadequate prediction techniques for the identification of delinquent clients. This causes pr...

Descripción completa

Detalles Bibliográficos
Autores: Kraenau, Nicole, Silva, Mariano, Castaneda, Pedro
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676327
Enlace del recurso:http://hdl.handle.net/10757/676327
Nivel de acceso:acceso embargado
Materia:Consumer credit
Delinquency
Hybrid model
https://purl.org/pe-repo/ocde/ford#2.11.00
id UUPC_0aaab02bb7eefacef7f9efe0310b0ef0
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676327
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru
title Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru
spellingShingle Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru
Kraenau, Nicole
Consumer credit
Delinquency
Hybrid model
https://purl.org/pe-repo/ocde/ford#2.11.00
title_short Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru
title_full Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru
title_fullStr Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru
title_full_unstemmed Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru
title_sort Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru
author Kraenau, Nicole
author_facet Kraenau, Nicole
Silva, Mariano
Castaneda, Pedro
author_role author
author2 Silva, Mariano
Castaneda, Pedro
author2_role author
author
dc.contributor.author.fl_str_mv Kraenau, Nicole
Silva, Mariano
Castaneda, Pedro
dc.subject.es_PE.fl_str_mv Consumer credit
Delinquency
Hybrid model
topic Consumer credit
Delinquency
Hybrid model
https://purl.org/pe-repo/ocde/ford#2.11.00
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.00
description The delinquency rate among clients of banking institutions in Peru has increased exponentially in recent years, due to the lack of early detection of potentially delinquent clients, mainly due to the use of inadequate prediction techniques for the identification of delinquent clients. This causes profitability to be reduced, credit risk to increase and the country's economy to be unstable. Previously, different solutions were generated to prevent non-payment, however these studies were not applied in the Peruvian environment and did not cover the personal and financial variables necessary to improve the detection of delinquent clients. In this work, a delinquency prediction system is proposed using classification algorithms such as logistic regression and Random Forest, with the aim of improving and automating the early detection of delinquent clients and counteracting the increase in delinquency, so that banks can of Peru can reduce their financial losses due to non-payment by delinquent clients, and prevent the granting of consumer loans to clients who have a high probability of delinquency. After validating the performance of the algorithm using key indicators, it was obtained that the results are superior to the compared algorithms, thus showing a precision of 90 percent, a recall of 95 percent and an accuracy of 91 percent.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-02T06:11:09Z
dc.date.available.none.fl_str_mv 2024-11-02T06:11:09Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1109/ISoIRS63136.2024.00066
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676327
dc.identifier.journal.es_PE.fl_str_mv Proceedings - 2024 International Symposium on Intelligent Robotics and Systems, ISoIRS 2024
dc.identifier.eid.none.fl_str_mv 2-s2.0-85203822016
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85203822016
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.1109/ISoIRS63136.2024.00066
Proceedings - 2024 International Symposium on Intelligent Robotics and Systems, ISoIRS 2024
2-s2.0-85203822016
SCOPUS_ID:85203822016
0000 0001 2196 144X
url http://hdl.handle.net/10757/676327
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.es_PE.fl_str_mv Repositorio Academico - UPC
Universidad Peruana de Ciencias Aplicadas (UPC)
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Proceedings - 2024 International Symposium on Intelligent Robotics and Systems, ISoIRS 2024
dc.source.beginpage.none.fl_str_mv 305
dc.source.endpage.none.fl_str_mv 308
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676327/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Académico UPC
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1851775710240178176
spelling 02b8c0345f074ed44f0e20640bd3b61c3002424f8a55f9d0246cec0aa74aae2245030017603855ecdf704ddb3414164138fc1d500Kraenau, NicoleSilva, MarianoCastaneda, Pedro2024-11-02T06:11:09Z2024-11-02T06:11:09Z2024-01-0110.1109/ISoIRS63136.2024.00066http://hdl.handle.net/10757/676327Proceedings - 2024 International Symposium on Intelligent Robotics and Systems, ISoIRS 20242-s2.0-85203822016SCOPUS_ID:852038220160000 0001 2196 144XThe delinquency rate among clients of banking institutions in Peru has increased exponentially in recent years, due to the lack of early detection of potentially delinquent clients, mainly due to the use of inadequate prediction techniques for the identification of delinquent clients. This causes profitability to be reduced, credit risk to increase and the country's economy to be unstable. Previously, different solutions were generated to prevent non-payment, however these studies were not applied in the Peruvian environment and did not cover the personal and financial variables necessary to improve the detection of delinquent clients. In this work, a delinquency prediction system is proposed using classification algorithms such as logistic regression and Random Forest, with the aim of improving and automating the early detection of delinquent clients and counteracting the increase in delinquency, so that banks can of Peru can reduce their financial losses due to non-payment by delinquent clients, and prevent the granting of consumer loans to clients who have a high probability of delinquency. After validating the performance of the algorithm using key indicators, it was obtained that the results are superior to the compared algorithms, thus showing a precision of 90 percent, a recall of 95 percent and an accuracy of 91 percent.Revisión por paresapplication/htmlengInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/embargoedAccessRepositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)Proceedings - 2024 International Symposium on Intelligent Robotics and Systems, ISoIRS 2024305308reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCConsumer creditDelinquencyHybrid modelhttps://purl.org/pe-repo/ocde/ford#2.11.00Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peruinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676327/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676327oai:repositorioacademico.upc.edu.pe:10757/6763272025-10-30 07:41:45.7Repositorio Académico UPCupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.407357
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).