Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru
Descripción del Articulo
The delinquency rate among clients of banking institutions in Peru has increased exponentially in recent years, due to the lack of early detection of potentially delinquent clients, mainly due to the use of inadequate prediction techniques for the identification of delinquent clients. This causes pr...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676327 |
| Enlace del recurso: | http://hdl.handle.net/10757/676327 |
| Nivel de acceso: | acceso embargado |
| Materia: | Consumer credit Delinquency Hybrid model https://purl.org/pe-repo/ocde/ford#2.11.00 |
| id |
UUPC_0aaab02bb7eefacef7f9efe0310b0ef0 |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676327 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru |
| title |
Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru |
| spellingShingle |
Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru Kraenau, Nicole Consumer credit Delinquency Hybrid model https://purl.org/pe-repo/ocde/ford#2.11.00 |
| title_short |
Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru |
| title_full |
Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru |
| title_fullStr |
Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru |
| title_full_unstemmed |
Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru |
| title_sort |
Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peru |
| author |
Kraenau, Nicole |
| author_facet |
Kraenau, Nicole Silva, Mariano Castaneda, Pedro |
| author_role |
author |
| author2 |
Silva, Mariano Castaneda, Pedro |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Kraenau, Nicole Silva, Mariano Castaneda, Pedro |
| dc.subject.es_PE.fl_str_mv |
Consumer credit Delinquency Hybrid model |
| topic |
Consumer credit Delinquency Hybrid model https://purl.org/pe-repo/ocde/ford#2.11.00 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.00 |
| description |
The delinquency rate among clients of banking institutions in Peru has increased exponentially in recent years, due to the lack of early detection of potentially delinquent clients, mainly due to the use of inadequate prediction techniques for the identification of delinquent clients. This causes profitability to be reduced, credit risk to increase and the country's economy to be unstable. Previously, different solutions were generated to prevent non-payment, however these studies were not applied in the Peruvian environment and did not cover the personal and financial variables necessary to improve the detection of delinquent clients. In this work, a delinquency prediction system is proposed using classification algorithms such as logistic regression and Random Forest, with the aim of improving and automating the early detection of delinquent clients and counteracting the increase in delinquency, so that banks can of Peru can reduce their financial losses due to non-payment by delinquent clients, and prevent the granting of consumer loans to clients who have a high probability of delinquency. After validating the performance of the algorithm using key indicators, it was obtained that the results are superior to the compared algorithms, thus showing a precision of 90 percent, a recall of 95 percent and an accuracy of 91 percent. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-11-02T06:11:09Z |
| dc.date.available.none.fl_str_mv |
2024-11-02T06:11:09Z |
| dc.date.issued.fl_str_mv |
2024-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.doi.none.fl_str_mv |
10.1109/ISoIRS63136.2024.00066 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676327 |
| dc.identifier.journal.es_PE.fl_str_mv |
Proceedings - 2024 International Symposium on Intelligent Robotics and Systems, ISoIRS 2024 |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85203822016 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85203822016 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
10.1109/ISoIRS63136.2024.00066 Proceedings - 2024 International Symposium on Intelligent Robotics and Systems, ISoIRS 2024 2-s2.0-85203822016 SCOPUS_ID:85203822016 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/676327 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| dc.source.es_PE.fl_str_mv |
Repositorio Academico - UPC Universidad Peruana de Ciencias Aplicadas (UPC) |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
Proceedings - 2024 International Symposium on Intelligent Robotics and Systems, ISoIRS 2024 |
| dc.source.beginpage.none.fl_str_mv |
305 |
| dc.source.endpage.none.fl_str_mv |
308 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676327/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Académico UPC |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1851775710240178176 |
| spelling |
02b8c0345f074ed44f0e20640bd3b61c3002424f8a55f9d0246cec0aa74aae2245030017603855ecdf704ddb3414164138fc1d500Kraenau, NicoleSilva, MarianoCastaneda, Pedro2024-11-02T06:11:09Z2024-11-02T06:11:09Z2024-01-0110.1109/ISoIRS63136.2024.00066http://hdl.handle.net/10757/676327Proceedings - 2024 International Symposium on Intelligent Robotics and Systems, ISoIRS 20242-s2.0-85203822016SCOPUS_ID:852038220160000 0001 2196 144XThe delinquency rate among clients of banking institutions in Peru has increased exponentially in recent years, due to the lack of early detection of potentially delinquent clients, mainly due to the use of inadequate prediction techniques for the identification of delinquent clients. This causes profitability to be reduced, credit risk to increase and the country's economy to be unstable. Previously, different solutions were generated to prevent non-payment, however these studies were not applied in the Peruvian environment and did not cover the personal and financial variables necessary to improve the detection of delinquent clients. In this work, a delinquency prediction system is proposed using classification algorithms such as logistic regression and Random Forest, with the aim of improving and automating the early detection of delinquent clients and counteracting the increase in delinquency, so that banks can of Peru can reduce their financial losses due to non-payment by delinquent clients, and prevent the granting of consumer loans to clients who have a high probability of delinquency. After validating the performance of the algorithm using key indicators, it was obtained that the results are superior to the compared algorithms, thus showing a precision of 90 percent, a recall of 95 percent and an accuracy of 91 percent.Revisión por paresapplication/htmlengInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/embargoedAccessRepositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)Proceedings - 2024 International Symposium on Intelligent Robotics and Systems, ISoIRS 2024305308reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCConsumer creditDelinquencyHybrid modelhttps://purl.org/pe-repo/ocde/ford#2.11.00Hybrid Model Based on Machine Learning for the Prediction of Consumer Credit Delinquency in the Banking Sector of Peruinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676327/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676327oai:repositorioacademico.upc.edu.pe:10757/6763272025-10-30 07:41:45.7Repositorio Académico UPCupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.407357 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).