An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine

Descripción del Articulo

This work proposes an electronic equipment which determines the marbling grade in beef rib eye according to the American grading scale using digital image processing and machine learning, achieving an 88.89 % coincidence level with grading done by beef specialists. Existing solutions which use image...

Descripción completa

Detalles Bibliográficos
Autores: Cardenas, Enori, Tabory, Enrique, Sanchez, Alonso, Kemper, Guillermo
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676168
Enlace del recurso:http://hdl.handle.net/10757/676168
Nivel de acceso:acceso abierto
Materia:American marbling grade
Image processing
Intramuscular fat
Meat
SVM
https://purl.org/pe-repo/ocde/ford#2.02.01
id UUPC_080631f2bfb48d88b12fd456ac352f17
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676168
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine
title An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine
spellingShingle An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine
Cardenas, Enori
American marbling grade
Image processing
Intramuscular fat
Meat
SVM
https://purl.org/pe-repo/ocde/ford#2.02.01
title_short An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine
title_full An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine
title_fullStr An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine
title_full_unstemmed An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine
title_sort An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine
author Cardenas, Enori
author_facet Cardenas, Enori
Tabory, Enrique
Sanchez, Alonso
Kemper, Guillermo
author_role author
author2 Tabory, Enrique
Sanchez, Alonso
Kemper, Guillermo
author2_role author
author
author
dc.contributor.author.fl_str_mv Cardenas, Enori
Tabory, Enrique
Sanchez, Alonso
Kemper, Guillermo
dc.subject.es_PE.fl_str_mv American marbling grade
Image processing
Intramuscular fat
Meat
SVM
topic American marbling grade
Image processing
Intramuscular fat
Meat
SVM
https://purl.org/pe-repo/ocde/ford#2.02.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.01
description This work proposes an electronic equipment which determines the marbling grade in beef rib eye according to the American grading scale using digital image processing and machine learning, achieving an 88.89 % coincidence level with grading done by beef specialists. Existing solutions which use image processing usually require calibration methods due to working in non-controlled environments. Furthermore, they only acquire the fat distribution from the longissimus dorsi muscle with an approximate accuracy of 80 %, without referring the distribution to any quality standard. In this work, meat samples are placed in a food grade stainless-steel enclosure with a touch screen and a digital RGB camera. The device acquires an image of the rib eye, which is then analyzed using techniques such as adaptive histogram analysis based on the HSV color model, histogram peaks detection for grayscale thresholding and a linear Support Vector Machine (SVM). The SVM determines the marbling grade based on the American Standard and shows it via a graphical user interface. The classifier was compared with a k-Nearest Neighbors (kNN) and Random Forest (RF) models, to choose the one with the best performance for marbling grade prediction. The SVM and the kNN models obtained a better performance than RF in identifying the marbling level. The estimated American Standard grade was compared to gold standard reference tests performed by specialists from the National Agrarian University in Lima-Peru, where the SVM achieved the aforementioned 88.89 % coincidence level.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-19T11:21:42Z
dc.date.available.none.fl_str_mv 2024-10-19T11:21:42Z
dc.date.issued.fl_str_mv 2024-10-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 1658077X
dc.identifier.doi.none.fl_str_mv 10.1016/j.jssas.2024.05.001
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676168
dc.identifier.journal.es_PE.fl_str_mv Journal of the Saudi Society of Agricultural Sciences
dc.identifier.eid.none.fl_str_mv 2-s2.0-85194139695
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85194139695
dc.identifier.pii.none.fl_str_mv S1658077X24000481
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 1658077X
10.1016/j.jssas.2024.05.001
Journal of the Saudi Society of Agricultural Sciences
2-s2.0-85194139695
SCOPUS_ID:85194139695
S1658077X24000481
0000 0001 2196 144X
url http://hdl.handle.net/10757/676168
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv King Saud University
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Journal of the Saudi Society of Agricultural Sciences
dc.source.volume.none.fl_str_mv 23
dc.source.issue.none.fl_str_mv 7
dc.source.beginpage.none.fl_str_mv 459
dc.source.endpage.none.fl_str_mv 473
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/5/1-s2.0-S1658077X24000481-main.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/4/1-s2.0-S1658077X24000481-main.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/1/1-s2.0-S1658077X24000481-main.pdf
bitstream.checksum.fl_str_mv 554bcc4ce533b49cf7e6117543015549
77091b78fe0af2f1aca10cec27d3fb1d
8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
357aad8ab2eff8d4c3aca8a9a8ddc0f2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Académico UPC
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1851775681899266048
spelling a1bc474557ffed7e1e9099c5055c99d33007ac25adaafae88478813bdb13b34e1c8300f776858fef9eda0f25482ac9d2dd039c50081a224b2a512525985a4d85a3aa8658f500Cardenas, EnoriTabory, EnriqueSanchez, AlonsoKemper, Guillermo2024-10-19T11:21:42Z2024-10-19T11:21:42Z2024-10-011658077X10.1016/j.jssas.2024.05.001http://hdl.handle.net/10757/676168Journal of the Saudi Society of Agricultural Sciences2-s2.0-85194139695SCOPUS_ID:85194139695S1658077X240004810000 0001 2196 144XThis work proposes an electronic equipment which determines the marbling grade in beef rib eye according to the American grading scale using digital image processing and machine learning, achieving an 88.89 % coincidence level with grading done by beef specialists. Existing solutions which use image processing usually require calibration methods due to working in non-controlled environments. Furthermore, they only acquire the fat distribution from the longissimus dorsi muscle with an approximate accuracy of 80 %, without referring the distribution to any quality standard. In this work, meat samples are placed in a food grade stainless-steel enclosure with a touch screen and a digital RGB camera. The device acquires an image of the rib eye, which is then analyzed using techniques such as adaptive histogram analysis based on the HSV color model, histogram peaks detection for grayscale thresholding and a linear Support Vector Machine (SVM). The SVM determines the marbling grade based on the American Standard and shows it via a graphical user interface. The classifier was compared with a k-Nearest Neighbors (kNN) and Random Forest (RF) models, to choose the one with the best performance for marbling grade prediction. The SVM and the kNN models obtained a better performance than RF in identifying the marbling level. The estimated American Standard grade was compared to gold standard reference tests performed by specialists from the National Agrarian University in Lima-Peru, where the SVM achieved the aforementioned 88.89 % coincidence level.Universidad Nacional Agraria La Molinaapplication/pdfengKing Saud Universityinfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/American marbling gradeImage processingIntramuscular fatMeatSVMhttps://purl.org/pe-repo/ocde/ford#2.02.01An electronic equipment for marbling meat grade detection based on digital image processing and support vector machineinfo:eu-repo/semantics/articleJournal of the Saudi Society of Agricultural Sciences237459473reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2024-10-19T11:21:43ZTHUMBNAIL1-s2.0-S1658077X24000481-main.pdf.jpg1-s2.0-S1658077X24000481-main.pdf.jpgGenerated Thumbnailimage/jpeg101988https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/5/1-s2.0-S1658077X24000481-main.pdf.jpg554bcc4ce533b49cf7e6117543015549MD55falseTEXT1-s2.0-S1658077X24000481-main.pdf.txt1-s2.0-S1658077X24000481-main.pdf.txtExtracted texttext/plain38664https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/4/1-s2.0-S1658077X24000481-main.pdf.txt77091b78fe0af2f1aca10cec27d3fb1dMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL1-s2.0-S1658077X24000481-main.pdf1-s2.0-S1658077X24000481-main.pdfapplication/pdf12565731https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/1/1-s2.0-S1658077X24000481-main.pdf357aad8ab2eff8d4c3aca8a9a8ddc0f2MD51true10757/676168oai:repositorioacademico.upc.edu.pe:10757/6761682025-10-30 07:41:40.399Repositorio Académico UPCupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.922529
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).