An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine
Descripción del Articulo
This work proposes an electronic equipment which determines the marbling grade in beef rib eye according to the American grading scale using digital image processing and machine learning, achieving an 88.89 % coincidence level with grading done by beef specialists. Existing solutions which use image...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676168 |
| Enlace del recurso: | http://hdl.handle.net/10757/676168 |
| Nivel de acceso: | acceso abierto |
| Materia: | American marbling grade Image processing Intramuscular fat Meat SVM https://purl.org/pe-repo/ocde/ford#2.02.01 |
| id |
UUPC_080631f2bfb48d88b12fd456ac352f17 |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676168 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine |
| title |
An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine |
| spellingShingle |
An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine Cardenas, Enori American marbling grade Image processing Intramuscular fat Meat SVM https://purl.org/pe-repo/ocde/ford#2.02.01 |
| title_short |
An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine |
| title_full |
An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine |
| title_fullStr |
An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine |
| title_full_unstemmed |
An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine |
| title_sort |
An electronic equipment for marbling meat grade detection based on digital image processing and support vector machine |
| author |
Cardenas, Enori |
| author_facet |
Cardenas, Enori Tabory, Enrique Sanchez, Alonso Kemper, Guillermo |
| author_role |
author |
| author2 |
Tabory, Enrique Sanchez, Alonso Kemper, Guillermo |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Cardenas, Enori Tabory, Enrique Sanchez, Alonso Kemper, Guillermo |
| dc.subject.es_PE.fl_str_mv |
American marbling grade Image processing Intramuscular fat Meat SVM |
| topic |
American marbling grade Image processing Intramuscular fat Meat SVM https://purl.org/pe-repo/ocde/ford#2.02.01 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.01 |
| description |
This work proposes an electronic equipment which determines the marbling grade in beef rib eye according to the American grading scale using digital image processing and machine learning, achieving an 88.89 % coincidence level with grading done by beef specialists. Existing solutions which use image processing usually require calibration methods due to working in non-controlled environments. Furthermore, they only acquire the fat distribution from the longissimus dorsi muscle with an approximate accuracy of 80 %, without referring the distribution to any quality standard. In this work, meat samples are placed in a food grade stainless-steel enclosure with a touch screen and a digital RGB camera. The device acquires an image of the rib eye, which is then analyzed using techniques such as adaptive histogram analysis based on the HSV color model, histogram peaks detection for grayscale thresholding and a linear Support Vector Machine (SVM). The SVM determines the marbling grade based on the American Standard and shows it via a graphical user interface. The classifier was compared with a k-Nearest Neighbors (kNN) and Random Forest (RF) models, to choose the one with the best performance for marbling grade prediction. The SVM and the kNN models obtained a better performance than RF in identifying the marbling level. The estimated American Standard grade was compared to gold standard reference tests performed by specialists from the National Agrarian University in Lima-Peru, where the SVM achieved the aforementioned 88.89 % coincidence level. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-10-19T11:21:42Z |
| dc.date.available.none.fl_str_mv |
2024-10-19T11:21:42Z |
| dc.date.issued.fl_str_mv |
2024-10-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
1658077X |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.jssas.2024.05.001 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676168 |
| dc.identifier.journal.es_PE.fl_str_mv |
Journal of the Saudi Society of Agricultural Sciences |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85194139695 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85194139695 |
| dc.identifier.pii.none.fl_str_mv |
S1658077X24000481 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
1658077X 10.1016/j.jssas.2024.05.001 Journal of the Saudi Society of Agricultural Sciences 2-s2.0-85194139695 SCOPUS_ID:85194139695 S1658077X24000481 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/676168 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
King Saud University |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
Journal of the Saudi Society of Agricultural Sciences |
| dc.source.volume.none.fl_str_mv |
23 |
| dc.source.issue.none.fl_str_mv |
7 |
| dc.source.beginpage.none.fl_str_mv |
459 |
| dc.source.endpage.none.fl_str_mv |
473 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/5/1-s2.0-S1658077X24000481-main.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/4/1-s2.0-S1658077X24000481-main.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/1/1-s2.0-S1658077X24000481-main.pdf |
| bitstream.checksum.fl_str_mv |
554bcc4ce533b49cf7e6117543015549 77091b78fe0af2f1aca10cec27d3fb1d 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 357aad8ab2eff8d4c3aca8a9a8ddc0f2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Académico UPC |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1851775681899266048 |
| spelling |
a1bc474557ffed7e1e9099c5055c99d33007ac25adaafae88478813bdb13b34e1c8300f776858fef9eda0f25482ac9d2dd039c50081a224b2a512525985a4d85a3aa8658f500Cardenas, EnoriTabory, EnriqueSanchez, AlonsoKemper, Guillermo2024-10-19T11:21:42Z2024-10-19T11:21:42Z2024-10-011658077X10.1016/j.jssas.2024.05.001http://hdl.handle.net/10757/676168Journal of the Saudi Society of Agricultural Sciences2-s2.0-85194139695SCOPUS_ID:85194139695S1658077X240004810000 0001 2196 144XThis work proposes an electronic equipment which determines the marbling grade in beef rib eye according to the American grading scale using digital image processing and machine learning, achieving an 88.89 % coincidence level with grading done by beef specialists. Existing solutions which use image processing usually require calibration methods due to working in non-controlled environments. Furthermore, they only acquire the fat distribution from the longissimus dorsi muscle with an approximate accuracy of 80 %, without referring the distribution to any quality standard. In this work, meat samples are placed in a food grade stainless-steel enclosure with a touch screen and a digital RGB camera. The device acquires an image of the rib eye, which is then analyzed using techniques such as adaptive histogram analysis based on the HSV color model, histogram peaks detection for grayscale thresholding and a linear Support Vector Machine (SVM). The SVM determines the marbling grade based on the American Standard and shows it via a graphical user interface. The classifier was compared with a k-Nearest Neighbors (kNN) and Random Forest (RF) models, to choose the one with the best performance for marbling grade prediction. The SVM and the kNN models obtained a better performance than RF in identifying the marbling level. The estimated American Standard grade was compared to gold standard reference tests performed by specialists from the National Agrarian University in Lima-Peru, where the SVM achieved the aforementioned 88.89 % coincidence level.Universidad Nacional Agraria La Molinaapplication/pdfengKing Saud Universityinfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/American marbling gradeImage processingIntramuscular fatMeatSVMhttps://purl.org/pe-repo/ocde/ford#2.02.01An electronic equipment for marbling meat grade detection based on digital image processing and support vector machineinfo:eu-repo/semantics/articleJournal of the Saudi Society of Agricultural Sciences237459473reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2024-10-19T11:21:43ZTHUMBNAIL1-s2.0-S1658077X24000481-main.pdf.jpg1-s2.0-S1658077X24000481-main.pdf.jpgGenerated Thumbnailimage/jpeg101988https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/5/1-s2.0-S1658077X24000481-main.pdf.jpg554bcc4ce533b49cf7e6117543015549MD55falseTEXT1-s2.0-S1658077X24000481-main.pdf.txt1-s2.0-S1658077X24000481-main.pdf.txtExtracted texttext/plain38664https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/4/1-s2.0-S1658077X24000481-main.pdf.txt77091b78fe0af2f1aca10cec27d3fb1dMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL1-s2.0-S1658077X24000481-main.pdf1-s2.0-S1658077X24000481-main.pdfapplication/pdf12565731https://repositorioacademico.upc.edu.pe/bitstream/10757/676168/1/1-s2.0-S1658077X24000481-main.pdf357aad8ab2eff8d4c3aca8a9a8ddc0f2MD51true10757/676168oai:repositorioacademico.upc.edu.pe:10757/6761682025-10-30 07:41:40.399Repositorio Académico UPCupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.922529 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).