El teorema de Cameron-Martin

Descripción del Articulo

En el presente trabajo, se demuestra que si H es el subespacio del espacio de Wiener (Ω, F, P) cuyos vectores h son absolutamente continuos y poseen derivada cuadrado integrable, entonces la traslación de P por un h en H resulta en una medida Ph que es equivalente a P y se da una fórmula para su der...

Descripción completa

Detalles Bibliográficos
Autor: Espejo Delzo, Juan Carlos
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/21831
Enlace del recurso:http://hdl.handle.net/20.500.14076/21831
Nivel de acceso:acceso abierto
Materia:Probabilidades
Procesos estocásticos
Teorema de Cameron-Martin
https://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:En el presente trabajo, se demuestra que si H es el subespacio del espacio de Wiener (Ω, F, P) cuyos vectores h son absolutamente continuos y poseen derivada cuadrado integrable, entonces la traslación de P por un h en H resulta en una medida Ph que es equivalente a P y se da una fórmula para su derivada de Radon-Nikodym con respecto a P: la fórmula de Cameron-Martin. Además, se prueba que si h esta´ en el complemento de H, entonces Ph y P son singulares. En primer lugar, para la prueba de la equivalencia entre Ph y P cuando h está en H y la demostración de la fórmula de Cameron-Martin se estudiará la acción de cambiar la medida de probabilidad original por una equivalente sobre un movimiento Browniano de tal manera que el nuevo proceso estocástico también sea un movimiento Browniano respecto a la nueva medida de probabilidad. En segundo lugar, para la demostración de la singularidad entre Ph y P cuando h está en el complemento de H se demostrará que los funcionales lineales continuos de Ω tienen una distribución Gaussiana centrada con respecto a la medida de probabilidad P y se dará una fórmula para calcular su varianza. Además, se dará una caracterización de los vectores de H que involucra a los funcionales lineales continuos de Ω. Finalmente, tanto en la prueba de la equivalencia como en la singularidad se utilizará la fórmula de Ito, propiedades del cálculo estocástico y de la teoría de la probabilidad.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).